Stress Paths on Displacement Piles During Monotonic and Cyclic Penetration

  • Jakob Vogelsang
  • Gerhard Huber
  • Theodoros Triantafyllidis
Chapter
Part of the Lecture Notes in Applied and Computational Mechanics book series (LNACM, volume 82)

Abstract

In this contribution, a study on the behavior of instrumented model piles in slow, cyclic penetration tests using a cylindrical full model test set-up is presented. The tests are performed under 1g-conditions in a uniform medium sand. A hydraulic driving system enables a displacement controlled penetration similar to the pile motion during vibro-driving at strongly reduced frequency. The pile instrumentation allows the measurement of shaft and tip force during the driving process. Systematic variation of soil density and displacement amplitude reveals the occurrence of typical stress paths of vibratory pile penetration. By comparison with results from monotonic and vibratory penetration tests, the influence of the penetration mode is deduced. Results from FE simulations applying a hypoplastic soil model help to illustrate the strong requirements and the considerable challenges to obtain realistic simulations of cyclic pile penetration processes. Some hints towards a further numerical modeling of the tests are given.

Keywords

Displacement pile Monotonic penetration Cyclic penetration Vibratory pile driving 

References

  1. 1.
    ASTM Standard D4254-91: Standard test method for minimum index density and unit weight of soils and calculation of relative density. Annual Book of ASTM Standards. ASTM International, West Conshohocken (2006)Google Scholar
  2. 2.
    Chrisopoulos, S., Vogelsang, J., Triantafyllidis, T.: FE simulation of model tests on vibratory pile driving in saturated sand. In: Triantafyllidis, T. (ed.) Holistic Simulation of Geotechnical Installation Processes. LNACM, vol. 82, pp. 124–149. Springer, Cham (2017)CrossRefGoogle Scholar
  3. 3.
    Choi, S.-K., Lee, M.-J., Choo, H., Tumay, M.T., Lee, W.: Preparation of a large size granular specimen using a rainer system with a porous plate. Geotech. Test. J. 33(1), 45–54 (2009)Google Scholar
  4. 4.
    Cudmani, R.O.: Statische, alternierende und dynamische Penetration in nichtbindigen Böden. Dissertation, vol. 152. Publications of the Institute of Soil Mechanics and Rock Mechanics, University of Karlsruhe (2001)Google Scholar
  5. 5.
    Dierssen, G.: Ein bodenmechanisches Modell des Vibrationsrammens in körnigen Böden. Dissertation, vol. 133. Publications of the Institute of Soil Mechanics and Rock Mechanics, University of Karlsruhe (1994)Google Scholar
  6. 6.
    DIN 18126: Bestimmung der Dichte nichtbindiger Böden bei lockerster und dichtester Lagerung. Beuth-Verlag (1996-11)Google Scholar
  7. 7.
    Grabe, J., König, F.: Zur aushubbedingten Reduktion des Drucksondierwiderstands. Bautechnik 81(7), 569–577 (2004)CrossRefGoogle Scholar
  8. 8.
    Henke, S.: Untersuchungen zur Pfropfenbildung infolge der Installation offener Profile in granularen Böden. Habilitation, vol. 29. Publications of the Institute of Geotechnical Engineering and Construction Management, TU Hamburg-Harburg (2013)Google Scholar
  9. 9.
    Hereema, E.P.: Predicting pile driveability: heather as an illustration of the “friction fatigue” theory. In: SPE European Petroleum Conference, London (1978)Google Scholar
  10. 10.
    Huber, G.: Vibrationsrammen: Großmaßstäbliche Versuche. In: Workshop “Vibrationsrammen”, Karlsruhe, Germany, pp. 13–30 (1997)Google Scholar
  11. 11.
    Lehane, B.M., White, D.J.: Lateral stress changes and shaft friction for model displacement piles in sand. Can. Geotech. J. 42, 1039–1052 (2005)CrossRefGoogle Scholar
  12. 12.
    Linder, W.-R.: Zum Eindring- und Tragverhalten von Pfählen in Sand. Dissertation, Fachbereich für Bauingenieur- und Vermessungswesen, TU Berlin (1977)Google Scholar
  13. 13.
    Niemunis, A., Herle, I.: Hypoplastic model for cohesionless soils with elastic strain range. Mech. Cohesive Frictional Mater. 2(4), 279–299 (1997)CrossRefGoogle Scholar
  14. 14.
    Rimoy, S.P.: Ageing and axial cyclic loading studies of displacement piles in sand. Dissertation, Department of Civil and Environmental Engineering, Imperial College London (2013)Google Scholar
  15. 15.
    Rodger, A.A., Littlejohn, G.S.: A study of vibratory driving in granular soils. Géotechnique 30(3), 269–293 (1980)CrossRefGoogle Scholar
  16. 16.
    Simulia: Abaqus Users Manual. Version 6.14 (2014)Google Scholar
  17. 17.
    Vogelsang, J., Zachert, H., Huber, G., Triantafyllidis, T.: Effects of soil deposition on the initial stress state in model tests: experimental results and FE simulation. In: Triantafyllidis, T. (ed.) Holistic Simulation of Geotechnical Installation Processes. LNACM, vol. 77, pp. 1–20. Springer, Heidelberg (2015). doi:10.1007/978-3-319-18170-7_1 CrossRefGoogle Scholar
  18. 18.
    Vogelsang, J., Huber, G., Triantafyllidis, T., Bender, T.: Interpretation of vibratory pile penetration based on digital image correlation. In: Triantafyllidis, T. (ed.) Holistic Simulation of Geotechnical Installation Processes. LNACM, vol. 80, pp. 31–51. Springer, Heidelberg (2016). doi:10.1007/978-3-319-23159-4_2 CrossRefGoogle Scholar
  19. 19.
    Vogelsang, J.: Untersuchungen zu den Mechanismen der Pfahlrammung. Dissertation, Publications of the Institute of Soil Mechanics and Rock Mechanics, Karlsruhe Institute of Technology, submitted (2017)Google Scholar
  20. 20.
    White, D.J., Lehane, B.M.: Friction fatigue on displacement piles in sand. Géotechnique 54(10), 645–658 (2004)CrossRefGoogle Scholar
  21. 21.
    von Wolffersdorff, P.-A.: A hypoplastic relation for granular materials with a predefined limit state surface. Mech. Cohesive Frictional Mater. 1, 251–271 (1996)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Jakob Vogelsang
    • 1
  • Gerhard Huber
    • 1
  • Theodoros Triantafyllidis
    • 1
  1. 1.Institute of Soil Mechanics and Rock Mechanics, Karlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations