Evaluating the Performance of an ISA-Hypoplasticity Constitutive Model on Problems with Repetitive Loading

  • William Fuentes
  • Theodoros Triantafyllidis
  • Carlos Lascarro
Part of the Lecture Notes in Applied and Computational Mechanics book series (LNACM, volume 82)


The ISA-plasticity is a useful theory to propose constitutive models for soils accounting for small strain effects. It uses the intergranular strain concept, previously proposed by Niemunis and Herle (1997) to enhance the capabilities of some existing hypoplastic models under cyclic loading. In contrast to its predecessor, the ISA-plasticity presents a completely different formulation to incorporate an elastic locus depending on a strain amplitude. However, it keeps similar advantages and brings other new ones such as the elastic locus and improved simulations of the plastic accumulation upon a number of cycles. In the present article, some numerical investigations are made to evaluate the performance of an ISA-plasticity based model on simulations with repetitive loading. We have chosen to couple the ISA-plasticity with the hypoplastic model by Wolfferdorff to simulate some experiments. At the beginning of the article, the theory of the ISA-plasticity is briefly explained. Subsequently, its numerical implementation is step by step detailed. A semi-explicit algorithm is proposed and some hints are given to allow the coupling with other models. At the end, some simulations of experiments with the Karlsruhe fine sand are shown in which the performance of the model under repetitive loading is evaluated. The behavior of the plastic accumulation is examined upon a number of cycles and some remarks are given about the current investigation.


ISA model Plastic accumulation Repetitive loading Hypoplasticity 


  1. 1.
    Al-Tabbaa, A., Wood, D.: An experimentally based bubble model for clay. In: Pietruszczak, S., Pande, G.N. (eds.) Conference on Numerical Models in Geomechanics NUMOG 3, Balkema, pp. 91–99 (1989)Google Scholar
  2. 2.
    Bauer, E.: Zum mechanischem Verhalten granularer Stoffe unter vorwiegend ödometrischer Beanspruchung. In: Veröffentlichungen des Institutes für Bodenmechanik und Felsmechanik der Universität Fridericiana in Karlsruhe, Heft 130, Karlsruhe, Germany, pp. 1–13 (1992)Google Scholar
  3. 3.
    Fellin, W., Mittendorfer, M., Ostermann, A.: Adaptive integration of constitutive rate equations. Comput. Geotech. 36(5), 698–708 (2009)CrossRefGoogle Scholar
  4. 4.
    Fellin, W., Ostermann, A.: Consistent tangent operators for constitutive rate equations. Int. J. Numer. Anal. Meth. Geomech. 26(12), 1213–1233 (2002)CrossRefMATHGoogle Scholar
  5. 5.
    Fuentes, W.: Contributions in mechanical modelling of fill materials, Issue 179. Institute of Soil Mechanics and Rock Mechanics (IBF), Karlsruhe Institute of Technology (KIT) (2014)Google Scholar
  6. 6.
    Fuentes, W., Triantafyllidis, T.: ISA model: a constitutive model for soils with yield surface in the intergranular strain space. Int. J. Numer. Anal. Meth. Geomech. 39(11), 1235–1254 (2015)CrossRefGoogle Scholar
  7. 7.
    Herle, I., Gudehus, G.: Determination of parameters of a hypoplastic constitutive model from properties of grain assemblies. Mech. Cohesive Frict. Mater. 4(5), 461–486 (1999)CrossRefGoogle Scholar
  8. 8.
    Herle, I., Kolymbas, D.: Hypoplasticity for soils with low friction angles. Comput. Geotechn. 31(5), 365–373 (2004)CrossRefGoogle Scholar
  9. 9.
    Kolymbas, D.: Introduction to Hypoplasticity, 1st edn. A.A. Balkema, Rotterdam (2000)Google Scholar
  10. 10.
    Masin, D.: A hypoplastic constitutive model for clays. Int. J. Numer. Anal. Meth. Geomech. 29(4), 311–336 (2005)CrossRefMATHGoogle Scholar
  11. 11.
    Niemunis, A.: Extended hypoplastic models for soils. In: Habilitation, Heft 34, Schriftenreihe des Institutes für Grundbau und Bodenmechanik der Ruhr-Universität Bochum, Germany (2003)Google Scholar
  12. 12.
    Niemunis, A.: Incremental driver, user’s manual. Karlsruhe Institute of Technology KIT, Germany, March 2008Google Scholar
  13. 13.
    Niemunis, A., Herle, I.: Hypoplastic model for cohesionless soils with elastic strain range. Mech. Cohesive Frict. Mater. 2(4), 279–299 (1997)CrossRefGoogle Scholar
  14. 14.
    Poblete, M.: Behaviour of cyclic multidimensional excitation of foundations structures, University of Karlsruhe. Institute of Soil and Rock Mechanics (2016)Google Scholar
  15. 15.
    Poblete, M., Fuentes, W., Triantafyllidis, T.: On the simulation of multidimensional cyclic loading with intergranular strain. Acta Geotech. 11(6), 1263–1285 (2016)CrossRefGoogle Scholar
  16. 16.
    Simpson, B.: Retaining structures: displacement and design. Géotechnique 42(4), 541–576 (1992)CrossRefGoogle Scholar
  17. 17.
    Viggiani, G., Atkinson, J.H.: Stiffness of fine-grained soil at very small strains. Géotechnique 45(2), 245–265 (1995)CrossRefGoogle Scholar
  18. 18.
    Wichtmann, T.: Explicit accumulation model for non-cohesive soils under cyclic loading, Heft 38. Dissertation, Schriftenreihe des Institutes für Grundbau und Bodenmechanik der Ruhr-Universität Bochum (2005). http://www.rz.uni-karlsruhe.de/~gn97/
  19. 19.
    Wichtmann, T.: Experiments with Karlsruhe fine sand. Technical report, Institute of Soil and Rock Mechanics (IBF), Karlsruhe Institute of Technology (KIT) (2013)Google Scholar
  20. 20.
    Wichtmann, T., Niemunis, A., Triantafyllidis, T.: On the “elastic” stiffness in a high-cycle accumulation model for sand: a comparison of drained and undrained cyclic triaxial test. Can. Geotech. J. 47(7), 791–805 (2010)CrossRefGoogle Scholar
  21. 21.
    Wolffersdorff, V.: A hypoplastic relation for granular materials with a predefined limit state surface. Mech. Cohesive Frict. Mater. 1(3), 251–271 (1996)CrossRefGoogle Scholar
  22. 22.
    Wu, W., Niemunis, A.: Failure criterion, flow rule and dissipation function derived from hypoplasticity. Mech. Cohesive Frict. Mater. 1(2), 145–163 (1996)CrossRefGoogle Scholar
  23. 23.
    Zachert, H.: Untersuchungen zur Gebrauchstauglichgkeit von Grundugen für Offshore-Windenergieanlagen, Issue 180. Institute of Soil Mechanics and Rock Mechanics (IBF), Karlsruhe Institute of Technology (KIT) (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • William Fuentes
    • 1
  • Theodoros Triantafyllidis
    • 2
  • Carlos Lascarro
    • 1
  1. 1.University del NorteBarranquillaColombia
  2. 2.Institute of Soil Mechanics and Rock MechanicsKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations