Predictive Mapping of the Nodule Abundance and Mineral Resource Estimation in the Clarion-Clipperton Zone Using Artificial Neural Networks and Classical Geostatistical Methods

  • Andreas Knobloch
  • Thomas KuhnEmail author
  • Carsten Rühlemann
  • Thomas Hertwig
  • Karl-Otto Zeissler
  • Silke Noack


The licence areas for the exploration of manganese nodule fields in the equatorial Pacific Ocean cover 75,000 km2 each. The purpose of this study was to predict the nodule abundance of nodule fields over an entire licence area using artificial neural network statistics. Bathymetry and backscatter information of the seafloor and different derived datasets, as well as sampling point data (box core stations), were used as model input data. Based on the prediction results, mineral resources of manganese nodules at different cut-off grades were calculated and the estimated resources were classified according to international codes. In principle, the estimation of tonnages of metals such as nickel, copper, cobalt, manganese, molybdenum, etc. is also possible based on the prediction results and the average metal contents of the nodules.


  1. Akin H, Siemens H (1988) Praktische Geostatistik: Eine Einführung für den Bergbau und die Geowissenschaften. Springer, Berlin, p 304CrossRefGoogle Scholar
  2. Barth A, Knobloch A, Noack S, Schmidt F (2014) Neural network based spatial modeling of natural phenomena and events. In: Khosrow-Pour M (ed) Systems and software development, modeling, and analysis: new perspectives and methodologies. IGI Global, p 186–211. ISBN 13: 9781466660984Google Scholar
  3. Beak (2012) advangeo® prediction software user’s guide. Version 2.0 for ArcGIS 10.0. Beak Consultants GmbH, Freiberg, 2007–2012Google Scholar
  4. Benndorf J (2015) Vorratsklassifikation nach internationalen Standards–Anforderungen und Modellansätze in der Lagerstättenbearbeitung. Markscheidewesen 122(2–3):6–14Google Scholar
  5. Bishop MC (2008) Neural networks for pattern recognition. Oxford University Press, OxfordGoogle Scholar
  6. Brown W, Groves D, Gedeon T (2003) Use of Fuzzy membership input layers to combine subjective geological knowledge and empirical data in a neural network method for mineral-potential mapping. Nat Resour Res 12(3):183–200. doi: 10.1023/A:1025175904545 CrossRefGoogle Scholar
  7. CRIRSCO (2012) International Reporting Template for the public reporting of Exploration Results, Mineral Resources and Mineral Reserves. Committee for Mineral Reserves International Reporting Standards, ICMM, Nov 2013. Accessed 31 Jan 2015
  8. GDMB (1983) Klassifikation von Lagerstättenvorräten mit Hilfe der Geostatistik: Vorträge einer Diskussionstagung der Fachsektion Lagerstättenforschung in der GMDB. Schriftenreihe der GDMB; Heft 29. Herausgeber: Gesellschaft Deutscher Metallhütten-und Bergleute r. V., Clausthal-Zellerfeld. Wissenschaftliche Redaktion: W. Ehrismann und H. W. Walter. Verlag Chemie, Weinheim, Deerfield Beach, BaselGoogle Scholar
  9. Hassoun M (1995) Fundamentals of artificial neural networks. MIT Press, Cambridge, p 537Google Scholar
  10. Haykins S (1998) Neural networks: a comprehensive foundation, 2nd edn. Prentice Hall, Upper Saddle RiverGoogle Scholar
  11. JORC (2012) The JORC code. Australasian code for reporting of exploration results, mineral resources and ore reserves. AusIMM, Carlton. Accessed 31 Jan 2016
  12. Kasabov NK (1996) Foundations of neural networks, fuzzy logic, and knowledge engineering. MIT Press, CambridgeGoogle Scholar
  13. Kuhn T, Rühlemann C, Wiedicke-Hombach M (2012) Developing a strategy for the exploration of vast seafloor areas for prospective manganese nodule fields. In: Zhou H, Morgan CL (eds) Marine minerals: finding the right balance of sustainable development and environmental protection. The Underwater Mining Institute, Shanghai, K1-9Google Scholar
  14. Lamothe D (2009) Assessment of the mineral potential for porphyry Cu-Au ± Mo deposits in the Baie-James region. Document published by Géologie Québec (EP 2009-02). Accessed 24 Oct 2010
  15. Mitchell NC (1993) Comment on the mapping of iron-manganese nodule fields using reconnaissance sonars such as GLORIA. Geo-Mar Lett 13:244–247CrossRefGoogle Scholar
  16. NASA (2014) Ocean Color Web: Data Access-Level 3 Browser. Aqua MODIS Data. Ocean Biology Processing Group (OBPG), NASA Goddard Space Flight Center. Accessed 5 Nov 2014
  17. NOAA (2014) OSCAR: Ocean Surface Current Analyses–Real time. Data Download for Ocean Surface Currents. OSCAR Project Office, Earth and Space Research. Accessed 5 Nov 2014
  18. Olden JO, Jackson DA (2002) Illuminating the “black box”: a randomization approach for understanding variable contributions in artificial neural networks. Ecol Model 154:135–150CrossRefGoogle Scholar
  19. Olden JD, Joy MK, Death RG (2004) An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data. Ecol Model 178:389–397CrossRefGoogle Scholar
  20. Rühlemann C, Kuhn T, Vink A, Wiedicke M (2013) Methods of manganese nodule exploration in the German license area. In: Morgan CL (ed) Recent developments in Atlantic seabed minerals exploration and other topics of timely interest. The Underwater Mining Institute, Rio de Janeiro, p 7Google Scholar
  21. Scanlon KM, Masson DG (1992) Fe-Mn nodule field indicated by GLORIA, North of the Puerto Rico Trench. Geo-Mar Lett 12:208–213CrossRefGoogle Scholar
  22. Wiedicke-Hombach M, Shipboard Scientific Party (2009) Cruise Report “Mangan 2008”, RV Kilo Moana, 13 Oct–22 Nov 2008. Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover, 89 ppGoogle Scholar
  23. Wiedicke-Hombach M, Shipboard Scientific Party (2010) Cruise Report “Mangan 2009”, RV Kilo Moana, 20 Oct–27 Nov 2009. Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover, 64 ppGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Andreas Knobloch
    • 1
  • Thomas Kuhn
    • 2
    Email author
  • Carsten Rühlemann
    • 2
  • Thomas Hertwig
    • 1
  • Karl-Otto Zeissler
    • 1
  • Silke Noack
    • 1
  1. 1.Beak Consultants GmbHFreibergGermany
  2. 2.Federal Institute for Geosciences and Natural Resources (BGR)HannoverGermany

Personalised recommendations