Advertisement

Seafloor Massive Sulfide Deposits: Distribution and Prospecting

  • Georgy CherkashovEmail author
Chapter

Abstract

Discovery of hydrothermal vents and seafloor massive sulfides (SMS) that contain metals of economic importance due to their high concentrations has generated significant interest among researchers as well as entrepreneurs as an alternative source that can be mined in future. This chapter provides a brief historical review of hydrothermal systems, the distribution, geological setting, morphology, composition, and age as well as formation and source of metals in SMS deposits. The chapter also looks at the criteria for recognition and exploration technologies for SMS deposits.

References

  1. Bäcker H (1982) Metalliferous sediments of hydrothermal origin from the Red Sea. In: Halbach P, Winter P (eds) Marine mineral deposits. Glückauf, Essen, pp 102–136Google Scholar
  2. Baturin GN, Rozanova TV (1972) Ore mineralization in the rift zone of the Indian ocean. In: Research of oceanic rift zones. pp 190–202Google Scholar
  3. Beaulieu SE, Baker ET, German CR (2015) Where are the undiscovered hydrothermal vents on oceanic spreading ridges? Deep Sea Res II. http://dx.doi.org/10.1016/j.dsr2.2015.05.001
  4. Bogdanov Y, Bortnikov N, Vikentiev I (1997) New type of modern mineral-forming system: black smokers of hydrothermal field at 14°45′ N, Mid-Atlantic Ridge. Ore Deposit Geol 39(1):68–90 (in Russian)Google Scholar
  5. Bonatti E, Joensuu O (1966) Deep-sea iron deposits from the South Pacific. Science 154(3749):643–645CrossRefGoogle Scholar
  6. Booth R, Crook K, Taylor B et al (1986) Hydrothermal chimneys and associated fauna in the Manus back-arc basin, Papua New Guinea. Eos 67(21):489–490CrossRefGoogle Scholar
  7. Boström K, Peterson MNA (1966) Precipitates from hydrothermal exhalations on the East Pacific Rise. Econ Geol 61(7):1258–1265CrossRefGoogle Scholar
  8. Cherkashov G, Poroshina I, Stepanova T, Ivanov V, Bel’tenev V, Lazareva L, Rozhdestvenskaya I, Samovarov M, Shilov V, Glasby G (2010) Seafloor massive sulfides from the northern equatorial Mid-Atlantic Ridge: new discoveries and perspectives. Mar Georesour Geotechnol 28:222–239CrossRefGoogle Scholar
  9. Corliss JB, Dymond J, Gordon LI, Edmond JM, Von Herzen RP, Ballard RD, Green K, Williams D, Bainbridge A, Crane K, Van Andel TH (1979) Submarine thermal springs on the Galapagos Rift. Science 203:1073–1083CrossRefGoogle Scholar
  10. Cyamex (1978) Découverte par submersible de sulfures polymétalliques massifs sur la dorsale du Pacifique oriental, par 21°N (projet “Rita”). C R Acad Sci 287:1365–1368Google Scholar
  11. de Ronde CEJ, Massoth GJ, Butterfield DA, Christenson BW, Ishibashi J, Ditchburn RG, Hannington MD, Brathwaite RL, Lupton JE, Kamenetsky VS, Graham IJ, Zellmer GF, Dziak RP, Embley RW, Dekov VM, Munnik F, Lahr J, Evans LJ, Takai K (2011) Submarine hydrothermal activity and gold-rich mineralization at Brothers Volcano, Kermadec Arc, New Zealand. Miner Deposita 46:541–584CrossRefGoogle Scholar
  12. Degens ET, Ross DA (eds) (1969) Hot brines and recent heavy metal deposits in the Red Sea. Springer, New YorkGoogle Scholar
  13. Escartın J, Smith DK, Cann J, Schouten H, Langmuir CH, Escrig S (2008) Central role of detachment faults in accretion of slow-spreading oceanic lithosphere. Nature 455:790–795CrossRefGoogle Scholar
  14. Firstova A, Stepanova T, Cherkashov G, Goncharov A, Babaeva S (2016) Composition and formation of gabbro-peridotite hosted seafloor massive sulfide deposits from the Ashadze-1 hydrothermal field, Mid-Atlantic Ridge. Minerals 6:19. doi: 10.3390/min6010019 CrossRefGoogle Scholar
  15. Fouquet Y (1997) Where are the large hydrothermal sulphide deposits in the oceans? Philos Trans R Soc Lond Ser A 355(1723):427–440CrossRefGoogle Scholar
  16. Fouquet Y, Lacroix D (2014) Deep marine mineral resources. Springer, HeidelbergCrossRefGoogle Scholar
  17. Fouquet Y, Cherkashov G, Charlou JL, Ondreas H, Birot D, Cannat M, Bortnikov N, Silantyev S, Sudarikov S, Cambon-Bonavita MA, Desbruyeres D, Fabri MC, Querellou J, Hourdez S, Gebruk A, Sokolova T, Hoise E, Mercier E, Kohn C, Donval JP, Etoubleau J, Normand A, Stephan M, Briand P, Crozon J, Fernagu P, Buffier E (2008) Serpentine cruise—ultramafic hosted hydrothermal deposits on the Mid-Atlantic Ridge: first submersible studies on Ashadze 1 and 2, Logatchev 2 and Krasnov vent fields. Inter Ridge News 17:15–19Google Scholar
  18. Fouquet Y, Cambon P, Etoubleau J, Charlou JL, Ondreas H, Barriga FJAS, Cherkashov G, Semkova T, Poroshina I, Bohn M, Donval JP, Henry K, Murphy P, Rouxel O (2010) Geodiversity of hydrothermal processes along the Mid-Atlantic Ridge and ultramafic hosted mineralization: a new type of oceanic Cu-Zn-Co-Au volcanogenic massive sulfide deposit. In: Rona PA, Devey CW et al (eds) Diversity of submarine hydrothermal systems on slow spreading ocean ridges. Geophysical monograph, vol 188. AGU, Washington, pp 297–320CrossRefGoogle Scholar
  19. Francheteau J, Needham HD, Choukroune P, Juteau J, Seguret M, Ballard RD, Fox PJ, Normark W, Carranza A, Cordoba A, Guerrero J, Rangin C, Bougault H, Cambon P, Hekinina R (1979) Massive deep sea sulphide ore deposit discovered on the East Pacific Rise. Nature 277:523–528CrossRefGoogle Scholar
  20. Franklin JM, Gibson HL, Jonasson IR, Galley AG (2005) Volcanogenic massive sulfide deposits: Economic Geology 100th Anniversary Volume: 523–560Google Scholar
  21. German C (2008) Global distribution and geodiversity of high-temperature seafloor venting. Deep-sea mining: a reality for science and society in the 21st century. Science and policy workshop, 10Google Scholar
  22. German C, Petersen S, Hannington MD (2016) Hydrothermal exploration of mid-ocean ridges: where might the largest sulfide deposits occur? Chem Geol 420:114–126. doi: 10.1016/j.chemgeo.2015.11.006 CrossRefGoogle Scholar
  23. Hannington MD, Jonasson IR, Herzig PM, Petersen S (1995) Physical and chemical processes of seafloor mineralization at mid-ocean Ridges. In: Geophysical Monograph, vol 91. AGU, Washington, pp 115−157Google Scholar
  24. Hannington MD, de Ronde C, Petersen S (2005) Sea-floor tectonicsand submarine hydrothermal systems. In: Hedenquist JW et al (eds) Economic Geology 100th Anniversary Volume, pp 111–141Google Scholar
  25. Hannington MD, Jamieson J, Monecke T, Petersen S (2010) Modern sea-floor massive sulfides and base metal resources: toward an estimate of global sea-floor massive sulfide potential. Spec Publ Soc Econ Geol 15:317–338Google Scholar
  26. Hannington M, Jamieson J, Monecke T, Petersen S, Beaulieu S (2011) The abundance of seafloor massive sulfide deposits. Geology 39:1155–1158 http://dx.doi.org/10.1130/G32468.1CrossRefGoogle Scholar
  27. Ishibashi J, Urabe T (1995) Hydrothermal activity related to arc-backarc magmatism in the Western Pacific. In Taylor B (ed) Backarc basins: Tectonics and magmatism. New York, Plenum Press, pp 451−495CrossRefGoogle Scholar
  28. Jamieson JW, Hannington MD, Clague DA, Kelley DS, Delaney JR, Holden JF et al. (2013) Sulfide geochronology along the Endeavour segment of the Juan de Fuca ridge. Geochem Geophys Geosyst. doi: 10.1002/ggge.20133CrossRefGoogle Scholar
  29. Jamieson JW, Clague DA, Hannington M (2014) Hydrothermal sulfide accumulation along the Endeavour Segment, Juan de Fuca Ridge. Earth Planet Sci Lett 395:136–148CrossRefGoogle Scholar
  30. Jamieson JW, Petersen S, Bach W (2016) Hydrothermalism. In: Harff J, Meschede M, Petersen S, Thiede J (eds) Encyclopedia of marine geosciences. pp 344–357CrossRefGoogle Scholar
  31. Koschinsky A et al (2006) Discovery of new hydrothermal vents on the southern Mid-Atlantic Ridge (4S–10S) during cruise M68/1. Inter Ridge News 15: 9–15Google Scholar
  32. Kuznetsov V, Tabuns E, Kuksa K, Cherkashov G, Maksimov F, Bel’tenev V, Lazareva L, Zherebtsov I, Grigoriev V, Baranova N (2015) The oldest seafloor massive sulfide deposits at the Mid-Atlantic Ridge: 230Th/U chronology and composition. Geochronometria 42(1):100–106CrossRefGoogle Scholar
  33. Lalou C, Reyss JL, Brichet E, Rona PA, Thompson G (1995) Hydrothermal activity on a 10(5)-year scale at a slow-spreading ridge, TAG hydrothermal field, mid-Atlantic Ridge 26-degrees-N. J Geophys Res 100:17855–17862CrossRefGoogle Scholar
  34. Lipton I (2012) Mineral Resource Estimate: Solwara Project, Bismarck Sea, PNG. Technical Report compiled under NI43–101. Golder Associates, for Nautilus Minerals Nuigini Inc.Google Scholar
  35. Lowell RP, Rona PA, Von Herzen RP (1995) Seafloor hydrothermal systems. J Geophys Res 100(B1):327–352CrossRefGoogle Scholar
  36. MacLeod CJ, Searle RC, Casey JF, Mallows C, Unsworth M, Achenbach K, Harris M (2009) Life cycle of oceanic core complexes. Earth Planet Sci Lett 287:333–344CrossRefGoogle Scholar
  37. McCaig AM, Cliff B, Escartin J, Fallick AE, MacLeod CJ (2007) Oceanic detachment faults focus very large volumes of black smoker fluids. Geology 35:935–938CrossRefGoogle Scholar
  38. Miller AR, Densmore CD, Degens ET, Hathaway JC, Manheim FT, Mcfarlin PF, Pocklington R, Jokela A (1966) Hot brines and recent iron deposits of the Red Sea. Geochim Cosmochim Acta 30(3):341–359CrossRefGoogle Scholar
  39. Monecke T, Petersen S, Hannington MD (2014) Constraints on water depth of massive sulfide formation: evidence from modern seafloor hydrothermal systems in arc-related settings, Econ Geol 109:2079–2101. http://dx.doi.org/10.2113/econgeo.109.8.2079 CrossRefGoogle Scholar
  40. Petersen S, Kuhn K, Kuhn T, Augustin N, Hékinian R, Franz L, Borowski C (2009) The geological setting of the ultramafic-hosted Logatchev hydrothermal field (14°45′N, Mid-Atlantic Ridge) and its influence on massive sulfide formation. Lithos 112:40–56CrossRefGoogle Scholar
  41. Petersen S, Kratschell A, Augustin N, Jamieson J, Hein JR, Hannington MD (2016) News from the seabed—geological characteristics and resource potential of deep-sea mineral resources. Mar Policy 70:175–187. doi: 10.1016/j.marpol.2016.03.012i
  42. Peterson MNA, Edgar NT, Von der Borch CC, Rex RW (1970) Cruise leg summary and discussion. In: Init Reports DSDP, vol 2. US Govt Print-Office, WashingtonGoogle Scholar
  43. Revelle RR (1944) Marine bottom samples collected in the Pacific Ocean by the “Carnegie” on her seventh cruise. Carnegie Inst Publ 556. Carnegie Inst, WashingtonGoogle Scholar
  44. Rona PA (1984) Hydrothermal mineralization at seafloor spreading centers. Earth Sci Rev 20(1):1–104CrossRefGoogle Scholar
  45. Rona PA, Scott SD (1993) A special issue on sea-floor hydrothermal mineralization; new perspectives; preface. Econ Geol 88(8):1933–1973Google Scholar
  46. Rona PA, Klinkhammer G, Nelson TA, Trefry JH, Elderfield H (1986) Black smokers, massive sulfides, and vent biota at the Mid-Atlantic Ridge. Nature 321(6065):33–37CrossRefGoogle Scholar
  47. Sillitoe RH (1972) Formation of certain massive sulphide deposits at sites of spreading. Trans Inst Min Metall 81(789):13141–13148Google Scholar
  48. Singer DA (1995) World class base and precious metal deposits—a quantitative analysis. Econ Geol 90:88–104CrossRefGoogle Scholar
  49. Skornyakova NS (1964) Dispersed iron and manganese in Pacific sediments. Lithol Min Deposit 5:3–20 (in Russian)Google Scholar
  50. Smith DK, Cann JR, Escartin J (2006) Widespread active detachment faulting and core complex formation near 13 N on the Mid-Atlantic Ridge. Nature 443:440–444CrossRefGoogle Scholar
  51. Spiess FN, Macdonald KS, Atwater T, Ballard R, Carranza A, Cordoba D, Cox C, Diazgarsia VM, Francheteau J, Guerrero J, Hawkins J, Hamon R, Hessler R, Juteau T, Kastner M, Larson R, Luyendik B, Macdougall JD, Miller S, Normark W, Orcutt J, Rangin C (1980) East Pacific Rise; hot springs and geophysical experiments. Science 207(4438):1421–1433CrossRefGoogle Scholar
  52. Takai K, Mottl MJ, Nielsen SHH, Birrien JL, Bowden S, Brandt L, Breuker A, Corona JC, Eckert S, Hartnett H, Hollis SP, House CH, Ijiri A, Ishibashi J, Masaki Y, McAllister S, McManus J, Moyer C, Nishizawa M, Noguchi T, Nunoura T, Southam G, Yanagawa K, Yang S, Yeats C (2012) IODP expedition 331: strong and expansive subseafloor hydrothermal activities in the Okinawa Trough. Sci Drill 13:9–26CrossRefGoogle Scholar
  53. Tivey MA, Schouten H, Kleinrock MC (2003) A near-bottom magnetic survey of the Mid-Atlantic Ridge axis at 26°N: implications for the tectonic evolution of the TAG segment. J Geophys Res 108:2277. doi: 10.1029/2002JB001967 CrossRefGoogle Scholar
  54. Wolery TJ, Sleep NH (1976) Hydrothermal circulation and geochemical flux at mid-ocean ridges. J Geol 84(3):249–275CrossRefGoogle Scholar
  55. Yang K, Scott SD (1996) Possible contribution of a metal-rich magmatic fluid to a sea-floor hydrothermal system. Nature 383(6659):420–423CrossRefGoogle Scholar
  56. Yang K, Scott SD (2006) Magmatic fluids as a source of metals in arc/back-arc hydrothermal systems: evidence from melt inclusions and vesicles. In: Christie DM, Fisher CR, Lee S-M (eds) Back Arc spreading systems: geological, biological, chemical and physical interactions, vol 166. American Geophysical Union, Geophysical Monograph, Washington, pp 163–184CrossRefGoogle Scholar
  57. Zierenberg RA et al (1998) The deep structure of a sea-floor hydrothermal deposit. Nature 392(6675):485–488CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute for Geology and Mineral Resources of the Ocean (VNIIOkeangeologia), Institute of Earth Sciences, St Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations