Advertisement

Connecting Brain Proteomics with Behavioural Neuroscience in Translational Animal Models of Neuropsychiatric Disorders

  • Zoltán SarnyaiEmail author
  • Paul C. Guest
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 974)

Abstract

Modelling psychiatric disorders in animals has been hindered by several challenges related to our poor understanding of the disease causes. This chapter describes recent advances in translational research which may lead to animal models and relevant proteomic biomarkers that can be informative about disease mechanisms and potential new therapeutic targets. The review focuses on the behavioural and molecular correlates in models of schizophrenia and major depressive disorder, as guided by recently established Research Domain Criteria (RDoC). This approach is based on providing proteomic data for aetiologically driven, behaviourally well-characterised animal models to link discovered biomarker candidates with the human disease.

Keywords

Translation Animal models Psychiatric disease Proteomics Research Domain Criteria Drug discovery 

References

  1. 1.
  2. 2.
    Nestler EJ, Hyman SE (2010) Animal models of neuropsychiatric disorders. Nat Neurosci 13:1161–1169CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Sarnyai Z, Alsaif M, Bahn S, Ernst A, Guest PC, Hradetzky E et al (2011) Behavioral and molecular biomarkers in translational animal models for neuropsychiatric disorders. Int Rev Neurobiol 101:203–238CrossRefPubMedGoogle Scholar
  4. 4.
    Coyle JT, Basu A, Benneyworth M, Balu D, Konopaske G (2012) Glutamatergic synaptic dysregulation in schizophrenia: therapeutic implications. Handb Exp Pharmacol 213:267–295. doi: 10.1007/978-3-642-25758-2_10 CrossRefGoogle Scholar
  5. 5.
    Farrell MS, Werge T, Sklar P, Owen MJ, Ophoff RA, O'Donovan MC et al (2015) Evaluating historical candidate genes for schizophrenia. Mol Psychiatry 20:555–562CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Giusti-Rodriguez P, Sullivan PF (2013) The genomics of schizophrenia: update and implications. J Clin Invest 123:4557–4563CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Karl T, Duffy L, Scimone A, Harvey RP, Schofield PR (2007) Altered motor activity, exploration and anxiety in heterozygous neuregulin 1 mutant mice: implications for understanding schizophrenia. Genes Brain Behav 6:677–687CrossRefPubMedGoogle Scholar
  8. 8.
    Mei L, Xiong WC (2008) Neuregulin 1 in neural development, synaptic plasticity and schizophrenia. Nat Rev Neurosci 9:437–452CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Moran PM, O'Tuathaigh CM, Papaleo F, Waddington JL (2014) Dopaminergic function in relation to genes associated with risk for schizophrenia: translational mutant mouse models. Prog Brain Res 211:79–112CrossRefPubMedGoogle Scholar
  10. 10.
    Spencer JR, Darbyshire KM, Boucher AA, Kashem MA, Long LE, McGregor IS et al (2013) Novel molecular changes induced by Nrg1 hypomorphism and Nrg1-cannabinoid interaction in adolescence: a hippocampal proteomic study in mice. Front Cell Neurosci 26:15. doi: 10.3389/fncel.2013.00015 Google Scholar
  11. 11.
    Folsom TD, Fatemi SH (2013) The involvement of Reelin in neurodevelopmental disorders. Neuropharmacology 68:122–135CrossRefPubMedGoogle Scholar
  12. 12.
    Schmitt A, Turck CW, Pilz PK, Malchow B, von Wilmsdorff M, Falkai P et al (2013) Proteomic similarities between heterozygous reeler mice and schizophrenia. Biol Psychiatry 74:e5–e10. doi: 10.1016/j.biopsych.2013.03.023 CrossRefPubMedGoogle Scholar
  13. 13.
    Arguello PA, Gogos JA (2012) Genetic and cognitive windows into circuit mechanisms of psychiatric disease. Trends Neurosci 35:3–13CrossRefPubMedGoogle Scholar
  14. 14.
    Wesseling H, Xu B, Want EJ, Holmes E, Guest PC, Karayiorgou M et al (2016) System-based proteomic and metabonomic analysis of the Df(16)A+/− mouse identifies potential miR-185 targets and molecular pathway alterations. Mol Psychiatry. doi: 10.1038/mp.2016.27 [Epub ahead of print]PubMedPubMedCentralGoogle Scholar
  15. 15.
    Marenco S, Weinberger DR (2000) The neurodevelopmental hypothesis of schizophrenia: following a trail of evidence from cradle to grave. Dev Psychopathol 12:501–527CrossRefPubMedGoogle Scholar
  16. 16.
    Lillrank SM, Lipska BK, Weinberger DR (1995) Neurodevelopmental animal models of schizophrenia. Clin Neurosci 3:98–104PubMedGoogle Scholar
  17. 17.
    Vercauteren FG, Flores G, Ma W, Chabot JG, Geenen L, Clerens S et al (2007) An organelle proteomic method to study neurotransmission-related proteins, applied to a neurodevelopmental model of schizophrenia. Proteomics 7:3569–3579CrossRefPubMedGoogle Scholar
  18. 18.
    Gomes FV, Rincon-Cortes M, Grace AA (2016) Adolescence as a period of vulnerability and intervention in schizophrenia: insights from the MAM model. Neurosci Biobehav Rev 70:260–270CrossRefPubMedGoogle Scholar
  19. 19.
    Hradetzky E, Sanderson TM, Tsang TM, Sherwood JL, Fitzjohn SM, Lakics V et al (2012) The methylazoxymethanol acetate (MAM-E17) rat model: molecular and functional effects in the hippocampus. Neuropsychopharmacology 37:364–377CrossRefPubMedGoogle Scholar
  20. 20.
    Meyer U (2014) Prenatal poly(i:C) exposure and other developmental immune activation models in rodent systems. Biol Psychiatry 75:307–315CrossRefPubMedGoogle Scholar
  21. 21.
    Gyorffy BA, Gulyassy P, Gellen B, Volgyi K, Madarasi D, Kis V et al (2016) Widespread alterations in the synaptic proteome of the adolescent cerebral cortex following prenatal immune activation in rats. Brain Behav Immun 56:289–309CrossRefPubMedGoogle Scholar
  22. 22.
    McGrath JJ, Burne TH, Feron F, Mackay-Sim A, Eyles DW (2010) Developmental vitamin D deficiency and risk of schizophrenia: a 10-year update. Schizophr Bull 36:1073–1078CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Eyles DW, Burne TH, McGrath JJ (2013) Vitamin D, effects on brain development, adult brain function and the links between low levels of vitamin D and neuropsychiatric disease. Front Neuroendocrinol 34:47–64CrossRefPubMedGoogle Scholar
  24. 24.
    McGrath J, Iwazaki T, Eyles D, Burne T, Cui X, Ko P et al (2008) Protein expression in the nucleus accumbens of rats exposed to developmental vitamin D deficiency. PLoS One 11:e2383. doi: 10.1371/journal.pone.0002383 CrossRefGoogle Scholar
  25. 25.
    Howes OD, Kapur S (2009) The dopamine hypothesis of schizophrenia: version III--the final common pathway. Schizophr Bull 35:549–562CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Kantrowitz J, Javitt DC (2012) Glutamatergic transmission in schizophrenia: from basic research to clinical practice. Curr Opin Psychiatry 25:96–102PubMedPubMedCentralGoogle Scholar
  27. 27.
    Hsieh JH, Stein DJ, Howells FM (2014) The neurobiology of methamphetamine induced psychosis. Front Hum Neurosci 8:537. doi: 10.3389/fnhum.2014.00537 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Iwazaki T, McGregor IS, Matsumoto I (2008) Protein expression profile in the amygdala of rats with methamphetamine-induced behavioral sensitization. Neurosci Lett 435:113–119CrossRefPubMedGoogle Scholar
  29. 29.
    Amann LC, Gandal MJ, Halene TB, Ehrlichman RS, White SL, McCarren HS et al (2010) Mouse behavioral endophenotypes for schizophrenia. Brain Res Bull 83:147–161CrossRefPubMedGoogle Scholar
  30. 30.
    Kraeuter AK, Loxton H, Lima BC, Rudd D, Sarnyai Z (2015) Ketogenic diet reverses behavioral abnormalities in an acute NMDA receptor hypofunction model of schizophrenia. Schizophr Res 169:491–493CrossRefPubMedGoogle Scholar
  31. 31.
    Sarnyai Z, Jashar C, Olivier B (2015) Modeling combined schizophrenia-related behavioral and metabolic phenotypes in rodents. Behav Brain Res 276:130–142CrossRefPubMedGoogle Scholar
  32. 32.
    Paulson L, Martin P, Persson A, Nilsson CL, Ljung E, Westman-Brinkmalm A et al (2003) Comparative genome- and proteome analysis of cerebral cortex from MK-801-treated rats. J Neurosci Res 71:526–533CrossRefPubMedGoogle Scholar
  33. 33.
    Paulson L, Martin P, Nilsson CL, Ljung E, Westman-Brinkmalm A, Blennow K et al (2004) Comparative proteome analysis of thalamus in MK-801-treated rats. Proteomics 4:819–825CrossRefPubMedGoogle Scholar
  34. 34.
    Bubenikova-Valesova V, Horacek J, Vrajova M, Hoschl C (2008) Models of schizophrenia in humans and animals based on inhibition of NMDA receptors. Neurosci Biobehav Rev 32:1014–1023CrossRefPubMedGoogle Scholar
  35. 35.
    Allen RM, Young SJ (1978) Phencyclidine-induced psychosis. Am J Psychiatry 135:1081–1084CrossRefPubMedGoogle Scholar
  36. 36.
    Jentsch JD, Roth RH (1999) The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 20:201–225CrossRefPubMedGoogle Scholar
  37. 37.
    Adell A, Jimenez-Sanchez L, Lopez-Gil X, Romon T (2012) Is the acute NMDA receptor hypofunction a valid model of schizophrenia? Schizophr Bull 38:9–14CrossRefPubMedGoogle Scholar
  38. 38.
    Ernst A, Ma D, Garcia-Perez I, Tsang TM, Kluge W, Schwarz E et al (2012) Molecular validation of the acute phencyclidine rat model for schizophrenia: identification of translational changes in energy metabolism and neurotransmission. J Proteome Res 11:3704–3714CrossRefPubMedGoogle Scholar
  39. 39.
    Wesseling H, Chan MK, Tsang TM, Ernst A, Peters F, Guest PC et al (2013) A combined metabonomic and proteomic approach identifies frontal cortex changes in a chronic phencyclidine rat model in relation to human schizophrenia brain pathology. Neuropsychopharmacology 38:2532–2544CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Cox DA, Gottschalk MG, Wesseling H, Ernst A, Cooper JD, Bahn S (2016) Proteomic systems evaluation of the molecular validity of preclinical psychosis models compared to schizophrenia brain pathology. Schizophr Res 177:98–107CrossRefPubMedGoogle Scholar
  41. 41.
    Nascimento JM, Martins-de-Souza D (2015) The proteome of schizophrenia. NPJ Schizophrenia 1:14003. doi: 10.1038/npjschz.2014.3 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Kalia M (2005) Neurobiological basis of depression: an update. Metabolism 54(5 Suppl 1):24–27CrossRefPubMedGoogle Scholar
  43. 43.
    Henningsen K, Palmfeldt J, Christiansen S, Baiges I, Bak S, Jensen ON et al (2012) Candidate hippocampal biomarkers of susceptibility and resilience to stress in a rat model of depression. Mol Cell Proteomics 11:M111.016428. doi: 10.1074/mcp.M111.016428 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Yang Y, Yang D, Tang G, Zhou C, Cheng K, Zhou J et al (2013) Proteomics reveals energy and glutathione metabolic dysregulation in the prefrontal cortex of a rat model of depression. Neuroscience 247:191–200CrossRefPubMedGoogle Scholar
  45. 45.
    Hodes GE, Pfau ML, Leboeuf M, Golden SA, Christoffel DJ, Bregman D (2014) Individual differences in the peripheral immune system promote resilience versus susceptibility to social stress. Proc Natl Acad Sci USA 111:16136–16141CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Mallei A, Failler M, Corna S, Racagni G, Mathé AA, Popoli M (2014) Synaptoproteomic analysis of a rat gene-environment model of depression reveals involvement of energy metabolism and cellular remodeling pathways. Int J Neuropsychopharmacol 18:pii: pyu067. doi: 10.1093/ijnp/pyu067 CrossRefGoogle Scholar
  47. 47.
    Zhou J, Liu Z, Yu J, Han X, Fan S, Shao W et al (2015) Quantitative proteomic analysis reveals molecular adaptations in the hippocampal synaptic active zone of chronic mild stress-unsusceptible rats. Int J Neuropsychopharmacol 19:pii: pyv100. doi: 10.1093/ijnp/pyv100 CrossRefGoogle Scholar
  48. 48.
    Wang Z, Li W, Chen J, Shi H, Zhao M, You H et al (2016) Proteomic analysis reveals energy metabolic dysfunction and neurogenesis in the prefrontal cortex of a lipopolysaccharide-induced mouse model of depression. Mol Med Rep 13:1813–1820PubMedGoogle Scholar
  49. 49.
    Huang TL, Lin CC (2015) Advances in biomarkers of major depressive disorder. Adv Clin Chem 68:177–204CrossRefPubMedGoogle Scholar
  50. 50.
    Redei EE, Mehta NS (2016) The promise of biomarkers in diagnosing major depression in primary care: the present and future. Curr Psychiatry Rep 17:601. doi: 10.1007/s11920-015-0601-1 Google Scholar
  51. 51.
    Carboni L, Nguyen TP, Caberlotto L (2016) Systems biology integration of proteomic data in rodent models of depression reveals involvement of the immune response and glutamatergic signaling. Proteomics Clin Appl 10:1254–1263. doi: 10.1002/prca.201500149 [Epub ahead of print]LaCrossRefPubMedGoogle Scholar
  52. 52.
    Lam RW (2008) Addressing circadian rhythm disturbances in depressed patients. J Psychopharmacol 22(7 Suppl):13–18CrossRefPubMedGoogle Scholar
  53. 53.
    Pandi-Perumal SR, Moscovitch A, Srinivasan V, Spence DW, Cardinali DP, Brown GM (2009) Bidirectional communication between sleep and circadian rhythms and its implications for depression: lessons from agomelatine. Prog Neurobiol 88:264–271CrossRefPubMedGoogle Scholar
  54. 54.
    Heitzman J (2009) Sleep disturbances-cause or result of depression. Psychiatr Pol 43:499–511PubMedGoogle Scholar
  55. 55.
    Blows WT (2000) The neurobiology of antidepressants. J Neurosci Nurs 32:177–180CrossRefPubMedGoogle Scholar
  56. 56.
    Tang SW, Helmeste D, Leonard B (2012) Is neurogenesis relevant in depression and in the mechanism of antidepressant drug action? A critical review. World J Biol Psychiatry 13:402–412CrossRefPubMedGoogle Scholar
  57. 57.
    Guest PC, Knowles MR, Molon-Noblot S, Salim K, Smith D, Murray F et al (2004) Mechanisms of action of the antidepressants fluoxetine and the substance P antagonist L-000760735 are associated with altered neurofilaments and synaptic remodelling. Brain Res 1002:1–10CrossRefPubMedGoogle Scholar
  58. 58.
    Khawaja X, Xu J, Liang JJ, Barrett JE (2004) Proteomic analysis of protein changes developing in rat hippocampus after chronic antidepressant treatment: Implications for depressive disorders and future therapies. J Neurosci Res 75:451–460CrossRefPubMedGoogle Scholar
  59. 59.
    Insel T, Cuthbert B, Garvey M, Heinssen R, Pine DS, Quinn K et al (2010) Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. Am J Psychiatry 167:748–751CrossRefPubMedGoogle Scholar
  60. 60.
    Cuthbert BN (2015) Research Domain Criteria: toward future psychiatric nosologies. Dialogues Clin Neurosci 17:89–97PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Laboratory of Psychiatric NeuroscienceAustralian Institute of Tropical Health and MedicineTownsvilleAustralia
  2. 2.Discipline of Biomedicine, College of Public Health, Medicine and Veterinary SciencesJames Cook UniversityTownsvilleAustralia
  3. 3.Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of BiologyUniversity of Campinas (UNICAMP)CampinasBrazil

Personalised recommendations