Combining Patient-Reprogrammed Neural Cells and Proteomics as a Model to Study Psychiatric Disorders

  • Giuliana S. Zuccoli
  • Daniel Martins-de-Souza
  • Paul C. Guest
  • Stevens K. Rehen
  • Juliana Minardi NascimentoEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 974)


The mechanisms underlying the pathophysiology of psychiatric disorders are still poorly known. Most of the studies about these disorders have been conducted on postmortem tissue or in limited preclinical models. The development of human induced pluripotent stem cells (iPSCs) has helped to increase the translational capacity of molecular profiling studies of psychiatric disorders through provision of human neuronal-like tissue. This approach consists of generation of pluripotent cells by genetically reprogramming somatic cells to produce the multiple neural cell types as observed within the nervous tissue. The finding that iPSCs can recapitulate the phenotype of the donor also affords the possibility of using this approach to study both the disease and control states in a given medical area. Here, we present a protocol for differentiation of human pluripotent stem cells to neural progenitor cells followed by subcellular fractionation which allows the study of specific cellular organelles and proteomic analysis.


Psychiatric disorders Brain iPSC Neuronal precursor cell Differentiation Proteomics Mass spectrometry 



GSZ, DMS, and JMN are supported by the São Paulo Research Foundation (FAPESP) grants 16/04912-2, 13/08711-3, and 14/21035-0.


  1. 1.
    Martins-de-Souza D, Solari FA, Guest PC, Zahedi RP, Steiner J (2015) Biological pathways modulated by antipsychotics in the blood plasma of schizophrenia patients and their association to a clinical response. NPJ Schizophrenia 1:15050. doi: 10.1038/npjschz.2015.50 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Marchetto MC, Brennand KJ, Boyer LF, Gage FH (2015) Induced pluripotent stem cells (iPSCs) and neurological disease modeling: progress and promises. Hum Mol Genet 20:R109–R115CrossRefGoogle Scholar
  3. 3.
    Pedrosa E, Sandler V, Shah A, Carroll R, Chang C, Rockowitz S et al (2011) Development of patient-specific neurons in schizophrenia using induced pluripotent stem cells. J Neurogenet 25:88–103CrossRefPubMedGoogle Scholar
  4. 4.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676CrossRefPubMedGoogle Scholar
  5. 5.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872CrossRefPubMedGoogle Scholar
  6. 6.
    Yu J, Thomson J (2008) Pluripotent stem cell lines. Genes Dev 22:1987–1997CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Park IH, Arora N, Huo H, Maherali N, Ahfeldt T, Shimamura A et al (2014) Disease-specific induced pluripotent stem cells. Cell 134:877–886CrossRefGoogle Scholar
  8. 8.
    Halevy T, Urbach A (2014) Comparing ESC and iPSC-based models for human genetic disorders. J Clin Med 3:1146–1162CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Marchetto MCN, Winner B, Gage FH (2010) Pluripotent stem cells in neurodegenerative and neurodevelopmental diseases. Hum Mol Genet 19:R71–R76CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Haggarty SJ, Perlis RH (2014) Translation: screening for novel therapeutics with disease-relevant cell types derived from human stem cell models. Biol Psychiatry 75:952–960CrossRefPubMedGoogle Scholar
  11. 11.
    Nascimento JM, Martins-de-Souza D (2015) The proteome of schizophrenia. NPJ Schizophrenia 1:14003. doi: 10.1038/npjschz.2014.3 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Ben-Shachar D, Laifenfeld D (2003) Mitochondria, synaptic plasticity, and schizophrenia. Int Rev Neurobiol 59:273–296CrossRefGoogle Scholar
  13. 13.
    Cassoli JS, Iwata K, Steiner J, Guest PC, Turck CW, Nascimento JM et al (2016) Effect of MK-801 and clozapine on the proteome of cultured human oligodendrocytes. Front Cell Neurosci 10:52. doi: 10.3389/fncel.2016.00052 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Salim K, Guest PC, Skynner HA, Bilsland JG, Bonnert TP, McAllister G et al (2007) Identification of proteomic changes during differentiation of adult mouse subventricular zone progenitor cells. Stem Cells Dev 16:143–165CrossRefPubMedGoogle Scholar
  15. 15.
    Brennand KJ, Simone A, Jou J, Gelboin-Burkhart C, Tran N, Sangar S et al (2011) Modelling schizophrenia using human induced pluripotent stem cells. Nature 473:221–225CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Giuliana S. Zuccoli
    • 1
  • Daniel Martins-de-Souza
    • 1
    • 2
  • Paul C. Guest
    • 1
  • Stevens K. Rehen
    • 3
    • 4
  • Juliana Minardi Nascimento
    • 1
    • 4
    Email author
  1. 1.Lab of Neuroproetomics, Department of Biochemistry and Tissue BiologyInstitute of Biology, University of Campinas (UNICAMP)CampinasBrazil
  2. 2.UNICAMP’s Neurobiology CenterCampinasBrazil
  3. 3.Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
  4. 4.D’Or Institute for Research and Education (IDOR)Rio de JaneiroBrazil

Personalised recommendations