In Situ X-Ray Synchrotron Profile Analysis During High Pressure Torsion of Ti

  • Erhard Schafler
  • Michael B. Kerber
  • Florian Spieckermann
  • Torben Fischer
  • Roman Schuster
  • Cornelia von Baeckmann
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

X-Ray Line Profile Analysis is a powerful method to characterize the microstructure of deformed materials, especially when high energy and brilliant Synchrotron radiation enables investigations with high time and spatial resolution. Parameters like dislocation density, dislocation arrangement as well as scattering domain size and it’s distribution are parameters of a physical model of peak broadening, which can be applied to high quality diffraction measurements. A small high-pressure-torsion-machine was designed in order to perform in situ diffraction experiments during the deformation process at hydrostatic pressures up to 8 GPa in order to follow the strain as well as pressure induced microstructural characteristics of any material deformed. This was possible with the ideal design and equipment at the High-Energy-Materials-Science-beamline at PETRA III in Hamburg. Recent and First results of experiments on HPT-deformed Ti show that at 6 GPa the high pressure \( \omega \)-phase is initiated only with additional shear deformation.

References

  1. 1.
    R. Valiev, Y. Estrin, Z. Horita, T. Langdon, M. Zehetbauer, Y. Zhu, JOM-US 58, 33 (2006)CrossRefGoogle Scholar
  2. 2.
    R. Valiev, Y. Estrin, Z. Horita, T. Langdon, M. Zehetbauer, Y. Zhu, JOM 68, 1216 (2016)CrossRefGoogle Scholar
  3. 3.
    R. Valiev, Nature 419, 887 (2002)CrossRefGoogle Scholar
  4. 4.
    M. Zehetbauer, Y.E. Zhu, Bulk Nanostructured Materials (Wiley-VCH, Weinheim, Germany, 2009)CrossRefGoogle Scholar
  5. 5.
    A. Vorhauer, R. Pippan, Scr. Mater. 51, 921 (2004)CrossRefGoogle Scholar
  6. 6.
    T. Hebesberger, H. Stüwe, A. Vorhauer, F. Wetscher, R. Pippan, Acta Mater. 53, 393 (2005)CrossRefGoogle Scholar
  7. 7.
    A. Hohenwarter, R. Pippan et al., to be publishedGoogle Scholar
  8. 8.
    R. Valiev, R. Islamgaliev, I. Alexandrov, Prog. Mater. Sci. 45, 103 (2000)CrossRefGoogle Scholar
  9. 9.
    C. Suryanarayana, Prog. Mater. Sci. 46, 1 (2001)CrossRefGoogle Scholar
  10. 10.
    J.Y. Huang, Y. Zhu, H. Jiang, T.C. Lowe, Acta Mater. 49, 1497 (2001)CrossRefGoogle Scholar
  11. 11.
    S. Dobatkin, V. Zakharov, L.L. Rokhlin, Mater. Sci. Forum 503–504, 399 (2006)CrossRefGoogle Scholar
  12. 12.
    C. Gammer, C. Mangler, C. Rentenberger, H.P. Karnthaler, Scr. Mater. 63, 312 (2010)Google Scholar
  13. 13.
    R.Z. Valiev, I.V. Alexandrov, Y.T. Zhu, T.C. Lowe, J. Mater. Res. 17, 5 (2002)CrossRefGoogle Scholar
  14. 14.
    Y. Wang, M. Chen, F. Zhou, E. Ma, Nature 419, 912 (2002)CrossRefGoogle Scholar
  15. 15.
    K.O.Z. Horita, T. Fujita, K. Kaneko, T.G. Langdon, Adv. Mater. 17, 1599 (2005)CrossRefGoogle Scholar
  16. 16.
    H. Hoeppel, M. Kautz, C. Xu, M. Murashkin, T. Langdon, R. Valiev, H. Mughrabi, Int. J. Fatigue 28, 1001 (2006)CrossRefGoogle Scholar
  17. 17.
    R. Valiev, D. Salimonenko, N. Tsenev, P. Berbon, T. Langdon, Scr. Mater. 1997, 37 (1945)Google Scholar
  18. 18.
    T. Waitz, T. Anretter, F. Fischer, H. Karnthaler, Mater. Sci. Technol. 24, 934 (2008)CrossRefGoogle Scholar
  19. 19.
    M. Zehetbauer, R. Groessinger, H. Krenn, M. Krystian, R. Pippan, P. Rogl, T. Waitz, R. Wuerschum, Adv. Eng. Mater. 12, 692 (2010)CrossRefGoogle Scholar
  20. 20.
    L. Zhang, A. Grytsiv, M. Kerber, P. Rogl, E. Bauer, M. Zehetbauer, J. Alloy. Compd. 490, 19 (2010)CrossRefGoogle Scholar
  21. 21.
    A. Kutzar, JETP Lett. 35, 108 (1982)Google Scholar
  22. 22.
    C. Jamieson, Science 140, 72 (1963)CrossRefGoogle Scholar
  23. 23.
    S. Sikka, Y. Vohra, R. Chidambaram, Prog. Mater Sci. 27, 245 (1963)CrossRefGoogle Scholar
  24. 24.
    A. Jayaraman, W. Clement, G. Kennedy, Phys. Rev. 131, 644Google Scholar
  25. 25.
    P. Scherrer, Göttinger Nachrichten 2, 98 (1918)Google Scholar
  26. 26.
    B.E. Warren, B.L. Averbach, J. Appl. Phys. 21, 595 (1950)CrossRefGoogle Scholar
  27. 27.
    B. Warren, B. Averbach, J. Appl. Phys. 23, 497 (1952)CrossRefGoogle Scholar
  28. 28.
    T. Ungár, A. Borbely, Appl. Phys. Lett. 69, 3173 (1996)CrossRefGoogle Scholar
  29. 29.
    T. Ungár, S. Ott, P.G. Sanders, A. Borbely, J.R. Weertman, Acta Mater. 46, 3693 (1998)CrossRefGoogle Scholar
  30. 30.
    M.A. Krivoglaz, X-Ray and Neutron Diffraction in Nonideal Crystals (Springer, 1996)Google Scholar
  31. 31.
    M. Wilkens, Fundamental Aspects of Dislocation Theory, vol. 2 (Nat. Bur. Stand. (US) Spec. Publ. No. 317, Washington, DC, USA, 1970), pp. 1195–1221Google Scholar
  32. 32.
    P. Cagliati, A. Paletti, F. Ricci, Nucl. Instrum. 3, 223 (1958)CrossRefGoogle Scholar
  33. 33.
    M. Wilkens, Phys. Status Solidi A 2, 359 (1970)CrossRefGoogle Scholar
  34. 34.
    M. Wilkens, Phys. Status Solidi A 104, K1 (1987)CrossRefGoogle Scholar
  35. 35.
    P. Klimanek, R. Kuzel, J. Appl. Crystallogr. 21, 59 (1988)CrossRefGoogle Scholar
  36. 36.
    T. Ungár, I. Dragomir, A. Revesz, A. Borbely, J. Appl. Crystallogr. 32, 992 (1999)CrossRefGoogle Scholar
  37. 37.
    I. Dragomir, T. Ungár, J. Appl. Cryst. 35, 556 (2002)CrossRefGoogle Scholar
  38. 38.
    R. Dinnebier, R. von Dreele, P.W. Stephens, S. Jelonek, J. Sieler, J. Appl. Crystallogr. 32, 761 (1999)Google Scholar
  39. 39.
    H. Wilhelm, A. Paris, E. Schafler, S. Bernstorff, J. Bonarski, T. Ungar, M. Zehetbauer, Mater. Sci. Eng. A 387389(1–2 SPEC. ISS.), 1018 (2004)Google Scholar
  40. 40.
    F. Spieckermann, H. Wilhelm, M. Kerber, E. Schafler, G. Polt, S. Bernstorff, F. Addiego, M. Zehetbauer, Polymer 15, 4195 (2010)CrossRefGoogle Scholar
  41. 41.
    F. Spieckermann, G. Polt, H. Wilhelm, M. Kerber, E. Schafler, E. ZehSchafler, Appl. Polym. Sci. 125, 4150 (2012)CrossRefGoogle Scholar
  42. 42.
    T. Ungár, J. Gubicza, G. Ribárik, A. Borbély, J. Appl. Crystallogr. 34, 298 (2001)CrossRefGoogle Scholar
  43. 43.
    G. Ribárik, J. Gubicza, T. Ungár, Mater. Sci. Eng. A 387389(1–2 SPEC. ISS.), 343 (2004)Google Scholar
  44. 44.
    N. Schell, A. King, F. Beckmann, T. Fischer, M. Müller, A. Schreyer, Mater. Sci. Forum 772, 57 (2014)Google Scholar
  45. 45.
    K. Edalati, E. Matsubara, Z. Horita, Metall. Mater. Trans. A 40A, 2079 (2009)CrossRefGoogle Scholar
  46. 46.
    E. Schafler, Scr. Mater. 62, 423 (2010)CrossRefGoogle Scholar
  47. 47.
    E. Schafler, Scr. Mater. 64, 130 (2011)CrossRefGoogle Scholar
  48. 48.
    E. Schafler, Mater. Sci. Forum 667–669, 657 (2011)Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  • Erhard Schafler
    • 1
  • Michael B. Kerber
    • 1
  • Florian Spieckermann
    • 2
  • Torben Fischer
    • 3
  • Roman Schuster
    • 4
  • Cornelia von Baeckmann
    • 5
  1. 1.Faculty of PhysicsUniversity of ViennaViennaAustria
  2. 2.Department Materials PhysicsMontanistic University LeobenLeobenAustria
  3. 3.Deutsches Elektronen-Synchrotron DESYHamburgGermany
  4. 4.Department of Lithospheric ResearchUniversity of ViennaViennaAustria
  5. 5.Faculty of ChemistryUniversity of ViennaViennaAustria

Personalised recommendations