Mechanical Properties and Fatigue Strength of Extruded Cobalt-Containing Magnetic Magnesium Alloys

  • Christian DemmingerEmail author
  • Christian Klose
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)


Magnetic magnesium alloys have inherent magnetic properties due to the alloying element cobalt. Thus, the entire structural component made from such an alloy can be utilized for mechanical load measurements using the harmonic analysis of eddy current signals. Because the solubility of cobalt in the magnesium matrix is negligible, the magnetic properties mainly originate from cobalt-rich precipitates. Both the mechanical properties and the magnetic properties are influenced significantly by other alloying elements, such as zinc, as well as the material’s microstructure. Two issues of the ternary magnetic magnesium alloy Mg-Co4-Zn2 are described in this study. The magnetic properties were characterized by using the magnetoelastic effect and the harmonic analysis of eddy current signals. In addition, the mechanical properties of specimens made from the extruded profiles were determined using tensile and rotating bending tests. A substantial dependence on the processing conditions was observed both for the mechanical and magnetic properties.


Magnesium Magnetism Extrusion Fatigue strength Harmonic analysis 



This research is sponsored in part by the Leibniz Universität Hannover within the project: “Ausscheidungsmechanismen ferromagnetischer Phasen in stranggepressten Mg–Co–Basislegierungen” and the German Research Foundation (DFG) within the subproject E2 “Magnetic Magnesium Alloys” of the Collaborative Research Center 653 “Gentelligent Components in their Lifecycle”. The eddy current measurements were conducted in cooperation with CRC 653 subproject S3 “Gentelligent Part Identification and Integrity Assessment”.


  1. 1.
    K. Hoffmann, Eine Einführung in die Technik des Messens mit Dehnungsmeßstreifen (Hottinger Baldwin Messtechnik, Darmstadt, Germany, 1987)Google Scholar
  2. 2.
    B.D. Cullity, C.D. Graham, Introduction to Magnetic Materials (IEEE/Wiley, Hoboken, NJ, 2009)Google Scholar
  3. 3.
    K.L. Feiste, Entwicklung der Harmonischen-Analyse von Wirbelstromsignalen zur Charakterisierung mechanischer Kugelgraphitgusseigenschaften, Ph.D. thesis, Leibniz Universität Hannover, 2003Google Scholar
  4. 4.
    C. Klose, Entwicklung magnetischer Magnesiumlegierungen mit sensorischen Eigenschaften, Ph.D. thesis, Leibniz Universität Hannover, 2013Google Scholar
  5. 5.
    B. Predel, Co–Mg (Cobalt–Magnesium), in Landolt-Börnstein—Group IV Physical Chemistry 5C Ca–Cd—Co–Zr, ed. by O. Madelung (Springer, Berlin/Heidelberg, Germany, 1993), pp. 1–2Google Scholar
  6. 6.
    M. Bauser, G. Sauer, K. Siegert, Strangpressen (Aluminium-Verlag, Düsseldorf, Germany, 2001)Google Scholar
  7. 7.
    S. Müller, Weiterentwicklung des Strangpressens von AZ-Magnesiumlegierungen im Hinblick auf eine Optimierung der Mikrostruktur, des Gefüges und der mechanischen Eigenschaften, Ph.D. thesis, Technische Universität Berlin, 2007Google Scholar
  8. 8.
    H. Mughrabi, Damage mechanisms and fatigue lives: from the low to the very high cycle regime. Procedia Eng. 55, 636–644 (2013)CrossRefGoogle Scholar
  9. 9.
    C. Potzies, K.U. Kainer, Fatigue of magnesium alloys. Adv. Eng. Mater. 6(5), 281–289 (2004)CrossRefGoogle Scholar
  10. 10.
    U. Karr, A. Stich, H. Mayer, Very high cycle fatigue of wrought magnesium alloy AZ61. Procedia Struct. Integrity 2, 1047–1054 (2016)CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  1. 1.Institut für Werkstoffkunde (Materials Science)Leibniz Universität HannoverGarbsenGermany

Personalised recommendations