Advertisement

GMM Background Modeling Using Divergence-Based Weight Updating

  • Juan D. Pulgarin-Giraldo
  • Andres Alvarez-Meza
  • David Insuasti-Ceballos
  • Thierry Bouwmans
  • German Castellanos-Dominguez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10125)

Abstract

Background modeling is a core task of video-based surveillance systems used to facilitate the online analysis of real-world scenes. Nowadays, GMM-based background modeling approaches are widely used, and several versions have been proposed to improve the original one proposed by Stauffer and Grimson. Nonetheless, the cost function employed to update the GMM weight parameters has not received major changes and is still set by means of a single binary reference, which mostly leads to noisy foreground masks when the ownership of a pixel to the background model is uncertain. To cope with this issue, we propose a cost function based on Euclidean divergence, providing nonlinear smoothness to the background modeling process. Achieved results over well-known datasets show that the proposed cost function supports the foreground/background discrimination, reducing the number of false positives, especially, in highly dynamical scenarios.

Keywords

Background modeling GMM Euclidean divergence 

Notes

Acknowledgment

This work was developed in the framework of the research project entitled “Caracterización de cultivos agrícolas mediante estrategias de teledetección y técnicas de procesamiento de imágenes” (36719) under the grants of “Convocatoria conjunta para el fomento de la investigación aplicada y desarrollo tecnológico” 2016, as well as by program “Doctorados Nacionales convocatoria 647 de 2014” funded by COLCIENCIAS and partial Ph.D. financial support from Universidad Autonoma de Occidente.

References

  1. 1.
    Molina-Giraldo, S., Álvarez-Meza, A.M., García-Álvarez, J.C., Castellanos-Domínguez, C.G.: Video segmentation framework by dynamic background modelling. In: Petrosino, A. (ed.) ICIAP 2013. LNCS, vol. 8156, pp. 843–852. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-41181-6_85 CrossRefGoogle Scholar
  2. 2.
    Maddalena, L., Petrosino, A.: A self-organizing approach to background subtraction for visual surveillance applications. IEEE Trans. Image Process. 17(7), 1168–1177 (2008)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Alvarez-Meza, A.M., Molina-Giraldo, S., Castellanos-Dominguez, G.: Background modeling using object-based selective updating and correntropy adaptation. Image Vis. Comput. 45, 22–36 (2016)CrossRefGoogle Scholar
  4. 4.
    Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time tracking. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2. IEEE (1999)Google Scholar
  5. 5.
    Bouwmans, T., El Baf, F., Vachon, B., et al.: Background modeling using mixture of Gaussians for foreground detection - a survey. Recent Pat. Comput. Sci. 1(3), 219–237 (2008)CrossRefGoogle Scholar
  6. 6.
    Hayman, E., Eklundh, J.-O.: Statistical background subtraction for a mobile observer. In: Proceedings of Ninth IEEE International Conference on Computer Vision, vol. 1, pp. 67–74, October 2003Google Scholar
  7. 7.
    Principe, J.: Information Theoretic Learning. Renyi’s Entropy and Kernel Perspectives. Springer, New York (2010)MATHGoogle Scholar
  8. 8.
    Zivkovic, Z.: Improved adaptive Gaussian mixture model for background subtraction. In: Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, vol. 2, pp. 28–31, August 2004Google Scholar
  9. 9.
    Sobral, A.: BGSLibrary: an OpenCV C++ background subtraction library. In: IX Workshop de Visão Computacional (WVC 2013), Rio de Janeiro, Brazil, pp. 38–43, June 2013Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Juan D. Pulgarin-Giraldo
    • 1
  • Andres Alvarez-Meza
    • 1
  • David Insuasti-Ceballos
    • 1
  • Thierry Bouwmans
    • 2
  • German Castellanos-Dominguez
    • 1
  1. 1.Signal Processing and Recognition GroupUniversidad Nacional de ColombiaManizalesColombia
  2. 2.Laboratoire MIA - Université de La RochelleLa RochelleFrance

Personalised recommendations