Advertisement

Reachability for Dynamic Parametric Processes

  • Anca Muscholl
  • Helmut Seidl
  • Igor Walukiewicz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10145)

Abstract

In a dynamic parametric process every subprocess may spawn arbitrarily many, identical child processes, that may communicate either over global variables, or over local variables that are shared with their parent. We show that reachability for dynamic parametric processes is decidable under mild assumptions. These assumptions are e.g. met if individual processes are realized by pushdown systems, or even higher-order pushdown systems. We also provide algorithms for subclasses of pushdown dynamic parametric processes, with complexity ranging between NP and DEXPTIME.

Keywords

Local Variable Transition System External Action Global Variable External Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata: application to model-checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997). doi: 10.1007/3-540-63141-0_10 CrossRefGoogle Scholar
  2. 2.
    Bouajjani, A., Müller-Olm, M., Touili, T.: Regular symbolic analysis of dynamic networks of pushdown systems. In: Abadi, M., Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 473–487. Springer, Heidelberg (2005). doi: 10.1007/11539452_36 CrossRefGoogle Scholar
  3. 3.
    Chadha, R., Madhusudan, P., Viswanathan, M.: Reachability under contextual locking. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 437–450. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-28756-5_30 CrossRefGoogle Scholar
  4. 4.
    Durand-Gasselin, A., Esparza, J., Ganty, P., Majumdar, R.: Model checking parameterized asynchronous shared-memory systems. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 67–84. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-21690-4_5 CrossRefGoogle Scholar
  5. 5.
    Esparza, J., Ganty, P., Majumdar, R.: Parameterized verification of asynchronous shared-memory systems. J. ACM 63(1), 10 (2016)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Gawlitza, T.M., Lammich, P., Müller-Olm, M., Seidl, H., Wenner, A.: Join-lock-sensitive forward reachability analysis for concurrent programs with dynamic process creation. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 199–213. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-18275-4_15 CrossRefGoogle Scholar
  7. 7.
    Hague, M.: Parameterised pushdown systems with non-atomic writes. In: Chakraborty, S., Kumar, A. (eds.) IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2011, 12–14 December 2011, Mumbai, India, vol. 13, LIPIcs, pp. 457–468. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2011)Google Scholar
  8. 8.
    Hague, M., Murawski, A.S., Ong, C.-H.L., Serre, O.: Collapsible pushdown automata and recursion schemes. In: LICS 2008, pp. 452–461. IEEE Computer Society (2008)Google Scholar
  9. 9.
    Kahlon, V.: Parameterization as abstraction: a tractable approach to the dataflow analysis of concurrent programs. In: Proceedings of the Twenty-Third Annual IEEE Symposium on Logic in Computer Science, LICS 2008, 24–27 June 2008, Pittsburgh, PA, USA, pp. 181–192. IEEE Computer Society (2008)Google Scholar
  10. 10.
    Kahlon, V., Ivančić, F., Gupta, A.: Reasoning about threads communicating via locks. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 505–518. Springer, Heidelberg (2005). doi: 10.1007/11513988_49 CrossRefGoogle Scholar
  11. 11.
    La Torre, S., Muscholl, A., Walukiewicz, I.: Safety of parametrized asynchronous shared-memory systems is almost always decidable. In: Aceto, L., de Frutos-Escrig, D. (eds.) 26th International Conference on Concurrency Theory, CONCUR, Madrid, Spain, September 1.4, vol. 42, LIPIcs, pp. 72–84. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2015)Google Scholar
  12. 12.
    Lammich, P., Müller-Olm, M.: Conflict analysis of programs with procedures, dynamic thread creation, and monitors. In: Alpuente, M., Vidal, G. (eds.) SAS 2008. LNCS, vol. 5079, pp. 205–220. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-69166-2_14 CrossRefGoogle Scholar
  13. 13.
    Lammich, P., Müller-Olm, M., Seidl, H., Wenner, A.: Contextual locking for dynamic pushdown networks. In: Logozzo, F., Fähndrich, M. (eds.) SAS 2013. LNCS, vol. 7935, pp. 477–498. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-38856-9_25 CrossRefGoogle Scholar
  14. 14.
    Lammich, P., Müller-Olm, M., Wenner, A.: Predecessor sets of dynamic pushdown networks with tree-regular constraints. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 525–539. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-02658-4_39 CrossRefGoogle Scholar
  15. 15.
    Ong, C.-H.L.: On model-checking trees generated by higher-order recursion schemes. In: LICS 2006, pp. 81–90 (2006)Google Scholar
  16. 16.
    Ramalingam, G.: Context-sensitive synchronization-sensitive analysis is undecidable. ACM Trans. Program. Lang. Syst. 22(2), 416–430 (2000)CrossRefGoogle Scholar
  17. 17.
    Walukiewicz, I.: Pushdown processes: games and model checking. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 62–74. Springer, Heidelberg (1996). doi: 10.1007/3-540-61474-5_58 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Anca Muscholl
    • 1
    • 2
  • Helmut Seidl
    • 3
  • Igor Walukiewicz
    • 4
  1. 1.LaBRIUniversity of BordeauxBordeauxFrance
  2. 2.TUM-IASMunichGermany
  3. 3.Fakultät für InformatikTU MünchenMunichGermany
  4. 4.LaBRI, CNRSUniversity of BordeauxBordeauxFrance

Personalised recommendations