Advertisement

Anticorrosion and Adsorption Mechanism of Rhizophora mangle L. Leaf-Extract on Steel-Reinforcement in 3.5% NaCl-Immersed Concrete

  • Joshua Olusegun Okeniyi
  • Olugbenga Adeshola Omotosho
  • Cleophas Akintoye Loto
  • Abimbola Patricia Idowu Popoola
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

This paper studies anticorrosion and adsorption mechanism of Rhizophora mangle L. leaf-extract on steel-reinforcement in concrete immersed in 3.5% NaCl test-environment. Open circuit potential, macrocell current and corrosion rate measurements were obtained from steel-reinforced concrete samples, into which different concentrations of the leaf-extract was admixed during casting, and which were immersed in the saline/marine simulating-environment. Corrosion noise resistance was modelled as the ratio of standard deviation of the corrosion potential to the standard deviation of the corrosion current. Analyses of these test-results showed that the corrosion rate from linear polarization resistance exhibited very good correlation with the noise resistance model for the leaf-extract concentrations studied. Further analyses identified Rhizophora mangle L. leaf-extract concentration with excellent corrosion inhibition efficiency performance on steel-reinforcement. Also data of anticorrosion performance followed the Langmuir adsorption isotherm model, which indicated physisorption as the prevalent corrosion-protection mechanism by the Rhizophora mangle L. leaf-extract on steel-rebar in concrete immersed in the 3.5% NaCl, simulating saline/marine environment.

Keywords

Rhizophora mangle L. leaf-extract Steel-reinforcement in concrete Corrosion noise resistance Correlation fitting model Adsorption isotherm Saline/marine simulating-environment 

References

  1. 1.
    Etteyeb, N., Dhouibi, L., Takenouti, H., & Triki, E. (2016). Protection of reinforcement steel corrosion by phenylphosphonic acid pre-treatment PART II: Tests in mortar medium. Cement & Concrete Composites, 65, 94–100.CrossRefGoogle Scholar
  2. 2.
    Okeniyi, J. O., Popoola, A. P. I., & Loto, C. A. (2015). Corrosion test-data modeling for C10H18N2Na2O10 performance on steel-rebar in NaCl-immersed concrete. Corrosion 2015 (NACE International, 2015) Paper No. 5590.Google Scholar
  3. 3.
    Okeniyi, J. O., Omotosho, O. A., Ogunlana, O. O., Okeniyi, E. T., Owoeye, T. F., Ogbiye, A. S., et al. (2015). Investigating prospects of Phyllanthus muellerianus as eco-friendly/sustainable material for reducing concrete steel-reinforcement corrosion in industrial/microbial environment. Energy Procedia, 74, 1274–1281.CrossRefGoogle Scholar
  4. 4.
    Fei, F. L., Hu, J., Wei, J. X., Yu, Q. J., & Chen, Z. S. (2014). Corrosion performance of steel reinforcement in simulated concrete pore solutions in the presence of imidazoline quaternary ammonium salt corrosion inhibitor. Construction and Building Materials, 70, 43–53.Google Scholar
  5. 5.
    Birbilis, N., & Cherry, B. W. (2005). Monitoring the corrosion and remediation of reinforced concrete on-site: An alternative approach. Materials and Corrosion, 56, 237–243.CrossRefGoogle Scholar
  6. 6.
    ASTM G16-95 R04. (2005). Standard guide for applying statistics to analysis of corrosion data. West Conshohocken PA: ASTM International.Google Scholar
  7. 7.
    Roberge, P. R. (2003). Statistical interpretation of corrosion test results. In S. D. Cramer & B. S. Covino, Jr. (Eds.), ASM handbook Vol 13A—Corrosion: Fundamentals, testing, and protection (pp. 425–429). Materials Park, OH: ASM International.Google Scholar
  8. 8.
    Song, H.-W., & Saraswathy, V. (2007). Corrosion monitoring of reinforced concrete structures: A review. International Journal of Electrochemical Science, 2, 1–28.Google Scholar
  9. 9.
    Okeniyi, J. O., Ambrose, I. J., Okpala, S. O., Omoniyi, O. M., Oladele, I. O., Loto, C. A., et al. (2014). Probability density fittings of corrosion test-data: Implications on C6H15NO3 effectiveness on concrete steel-rebar corrosion. Sadhana, 39, 731–764.CrossRefGoogle Scholar
  10. 10.
    ASTM C876–91 R99. (2005). Standard test method for half-cell potentials of uncoated reinforcing steel in concrete. West Conshohocken PA: ASTM International.Google Scholar
  11. 11.
    Okeniyi, J. O., Ambrose, I. J., Oladele, I. O., Loto, C. A., & Popoola, A. P. I. (2013). Electrochemical performance of sodium dichromate partial replacement models by triethanolamine admixtures on steel-rebar corrosion in concretes. International Journal of Electrochemical Science, 8, 10758–10771.Google Scholar
  12. 12.
    Okeniyi, J. O., Oladele, I. O., Ambrose, I. J., Okpala, S. O., Omoniyi, O. M., Loto, C. A., et al. (2013). Analysis of inhibition of concrete steel-rebar corrosion by Na2Cr2O7 concentrations: Implications for conflicting reports on inhibitor effectiveness. Journal of Central South University, 20, 3697–3714.CrossRefGoogle Scholar
  13. 13.
    Ismail, M., Raja, P. B., & Salawu, A. A. (2015). Developing deeper understanding of green inhibitors for corrosion of reinforcing steel in concrete. In H. L. Lim (Ed.), Handbook of research on recent developments in materials science and corrosion engineering education (pp. 118–146). Hershey, PA: IGI Global.Google Scholar
  14. 14.
    Okeniyi, J. O., Loto, C. A., & Popoola, A. P. I. (2014). Electrochemical performance of Anthocleista djalonensis on steel-reinforcement corrosion in concrete immersed in saline/marine simulating-environment. Transactions of the Indian Institute of Metals, 67, 959–969.CrossRefGoogle Scholar
  15. 15.
    Okeniyi, J. O., Loto, C. A., & Popoola, A. P. I. (2014). Electrochemical performance of Phyllanthus muellerianus on the corrosion of concrete steel-reinforcement in industrial/microbial simulating-environment. Portugaliae Electrochimica Acta, 32, 199–211.CrossRefGoogle Scholar
  16. 16.
    Perera, L. M. S., Escobar, A., Souccar, C., Ma Remigio, A., & Mancebo, B. (2010). Pharmacological and toxicological evaluation of Rhizophora mangle L., as a potential antiulcerogenic drug: Chemical composition of active extract. Journal of Pharmacognosy and Phytotherapy, 2, 56–63.Google Scholar
  17. 17.
    Okeniyi, J. O., Loto, C. A., & Popoola, A. P. I. (2014). Rhizophora mangle L. effects on steel-reinforced concrete in 0.5 M H2SO4: Implications for corrosion-degradation of wind-energy structures in industrial environments. Energy Procedia, 50, 429–436.CrossRefGoogle Scholar
  18. 18.
    Okeniyi, J. O., Loto, C. A., Popoola, A. P. I., & Omotosho, O. A. (2015). Performance of Rhizophora mangle L. leaf-extract and sodium dichromate synergies on steel-reinforcement corrosion in 0.5 M H2SO4-immersed concrete. CORROSION 2015 (NACE International, 2015) Paper No. 5636.Google Scholar
  19. 19.
    ASTM C192/192M-02. (2005). Standard practice for making and curing concrete test specimens in the laboratory. West Conshohocken, PA: ASTM International.Google Scholar
  20. 20.
    ASTM G109-99a. (2005). Standard test method for determining the effects of chemical admixtures on the corrosion of embedded steel reinforcement in concrete exposed to chloride environments. West Conshohocken, PA: ASTM International.Google Scholar
  21. 21.
    Corbett, R. A. (2005). Immersion testing. In R. Baboian (Ed.), Corrosion tests and standards: Application and interpretation (2nd ed., pp. 139–146). West Conshohocken, PA: ASTM International.Google Scholar
  22. 22.
    Okeniyi, J. O., Oladele, I. O., Omoniyi, O. M., Loto, C. A., & Popoola, A. P. (2015). Inhibition and compressive-strength performance of Na2Cr2O7 and C10H14N2Na2O8·2H2O in steel-reinforced concrete in corrosive environments. Canadian Journal of Civil Engineering, 42, 408–416.CrossRefGoogle Scholar
  23. 23.
    ASTM C876-91 R99. (2005). Standard test method for half-cell potentials of uncoated reinforcing steel in concrete. West Conshohocken, PA: ASTM International.Google Scholar
  24. 24.
    Okeniyi, J. O., Omotosho, O. A., Ajayi, O. O., & Loto, C. A. (2014). Effect of potassium-chromate and sodium-nitrite on concrete steel-rebar degradation in sulphate and saline media. Construction and Building Materials, 50, 448–456.CrossRefGoogle Scholar
  25. 25.
    Omotosho, O. A., Loto, C. A., Ajayi, O. O., Okeniyi, J. O., & Popoola, A. P. I. (2014). Investigating potassium chromate and aniline effect on concrete steel rebar degradation in saline and sulphate media. International Journal of Electrochemical Science, 9, 2171–2185.Google Scholar
  26. 26.
    Elsener, B., Andrade, C., Gulikers, J., Polder, R., & Raupach, M. (2003). Hall-cell potential measurements—Potential mapping on reinforced concrete structures. Materials and Structures, 36, 461–471.CrossRefGoogle Scholar
  27. 27.
    Abdelaziz, G. E., Abdelalim, A. M. K., & Fawzy, Y. A. (2009). Evaluation of the short and long-term efficiencies of electro-chemical chloride extraction. Cement and Concrete Research, 39, 727–732.CrossRefGoogle Scholar
  28. 28.
    McCarter, W. J., & Vennesland, Ø. (2004). Sensor systems for use in reinforced concrete structures. Construction and Building Materials, 18, 351–358.CrossRefGoogle Scholar
  29. 29.
    Okeniyi, J. O., Popoola, A. P. I., Loto, C. A., Omotosho, O. A., Okpala, S. O., & Ambrose, I. J. (2015). Effect of NaNO2 and C6H15NO3 synergistic admixtures on steel-rebar corrosion in concrete immersed in aggressive environments. Advances in Materials Science and Engineering, 2015, 11.Google Scholar
  30. 30.
    Sastri, V. S. (2011). Green corrosion inhibitors: Theory and practice. New Jersey: Wiley.CrossRefGoogle Scholar
  31. 31.
    Okeniyi, J. O., Okeniyi, E. T., & Atayero, A. A. (2015). Programming development of Kolmogorov-Smirnov goodness-of-fit testing of data normality as a Microsoft Excel® library function. Journal of Software & Systems Development, 2015, 1–15.Google Scholar
  32. 32.
    Okeniyi, J. O., Moses, I. F., & Okeniyi, E. T. (2015). Wind characteristics and energy potential assessment in Akure, South West Nigeria: Econometrics and policy implications. International Journal of Ambient Energy, 36, 282–300.CrossRefGoogle Scholar
  33. 33.
    Okeniyi, J. O., Obiajulu, U. E., Ogunsanwo, A. O., Odiase, N. W., & Okeniyi, E. T. (2013). CH4 emission model from the waste of Sus Domesticus and Gallus Domesticus in Nigerian local farms: Environmental implications and prospects. Mitigation and Adaptation Strategies for Global Change, 18, 325–335.CrossRefGoogle Scholar
  34. 34.
    Okeniyi, J. O., Omotosho, O. A., Loto, C. A., & Popoola, A. P. I. (2015). Corrosion rate and noise resistance correlation from NaNO2-admixed steel-reinforced concrete. Asian Journal of Scientific Research, 8, 454–465.CrossRefGoogle Scholar
  35. 35.
    Okeniyi, J. O., Ohunakin, O. S., & Okeniyi, E. T. (2015). Assessments of wind-energy potential in selected sites from three geopolitical zones in Nigeria: Implications for renewable/sustainable rural electrification. The Scientific World Journal, 2015, 1–13.CrossRefGoogle Scholar
  36. 36.
    Eden, D. A. (2000). Electrochemical noise. In R. W. Revie (Ed.), Uhlig’s corrosion handbook (2nd ed., pp. 1227–1238). New York: Wiley.Google Scholar
  37. 37.
    Foo, K. Y., & Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156, 2–10.CrossRefGoogle Scholar
  38. 38.
    Kelly, R. G., Inman, M. E., & Hudson, J. L. (1996). Analysis of electrochemical noise for Type 410 stainless steel in chloride solutions. In J. R. Kearns, J. R. Scully, P. R. Roberge, D. L. Reichert, & J. L. Dawson (Eds.), Electrochemical noise measurement for corrosion applications, ASTM STP 1277 (pp. 101–113). American Society for Testing and Materials.Google Scholar
  39. 39.
    Coffey, R., Dorai-Raj, S., O’Flaherty, V., Cormican, M., & Cummins, E. (2013). Modeling of pathogen indicator organisms in a small-scale agricultural catchment using SWAT. Human and Ecological Risk Assessment: An International Journal, 19, 232–253.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  • Joshua Olusegun Okeniyi
    • 1
  • Olugbenga Adeshola Omotosho
    • 1
  • Cleophas Akintoye Loto
    • 1
    • 2
  • Abimbola Patricia Idowu Popoola
    • 2
  1. 1.Mechanical Engineering DepartmentCovenant UniversityOtaNigeria
  2. 2.Chemical, Metallurgical and Materials Engineering DepartmentTshwane University of TechnologyPretoriaSouth Africa

Personalised recommendations