Patrolling Trees with Mobile Robots

  • Jurek Czyzowicz
  • Adrian Kosowski
  • Evangelos Kranakis
  • Najmeh Taleb
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10128)

Abstract

Consider k identical robots traversing the edges of a geometric tree. The robots have to patrol the tree by perpetually moving along edges, but without exceeding their maximum unit speed. The robots can change direction and speed anywhere on vertices or interiors of edges. The quality of patrolling is measured by idleness, which is defined as the longest time period during which any point on the tree is not visited by any of the robots. Goal is to provide algorithms describing the movement of the robots along the tree so as to minimize the idleness.

Our main contribution is to show that there is an off-line schedule, where placing k robots at specific initial positions on a geometric tree T and making them move at unit speed, permits to achieve the optimal idle time. We extend this to a graph tree model (where the robots can change direction only on vertices). We also consider on-line schedules, working for collections of simple, identical, memoryless robots, walking with constant speed, which behave according to so-called rotor-router model. We conclude with a discussion of experimental work indicating that in a random setting the rotor router is efficient on tree graphs.

Keywords

Algorithms Experiments Idle time Off-line On-line Patrolling Robot Rotor router Tree 

References

  1. 1.
    Agmon, N., Hazon, N., Kaminka, G.A.: The giving tree: constructing trees for efficient offline and online multi-robot coverage. Ann. Math. Artif. Intell. 52(2–4), 143–168 (2008)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Agmon, N., Kraus, S., Kaminka, G.A.: Multi-robot perimeter patrol in adversarial settings. In: ICRA, pp. 2339–2345 (2008)Google Scholar
  3. 3.
    Aldous, D.J.: The random walk construction of uniform spanning trees and uniform labelled trees. SIAM J. Discrete Math. 3(4), 450–465 (1990)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Alpern, S., Morton, A., Papadaki, K.: Optimizing randomized patrols. Operational Research Group, London School of Economics and Political Science (2009)Google Scholar
  5. 5.
    Alpern, S., Morton, A., Papadaki, K.: Patrolling games. Oper. Res. 59(5), 1246–1257 (2011)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Amigoni, F., Basilico, N., Gatti, N., Saporiti, A., Troiani, S.: Moving game theoretical patrolling strategies from theory to practice: an USARSim simulation. In: ICRA, pp. 426–431 (2010)Google Scholar
  7. 7.
    Bampas, E., Gąsieniec, L., Hanusse, N., Ilcinkas, D., Klasing, R., Kosowski, A.: Euler tour lock-in problem in the rotor-router model. In: Keidar, I. (ed.) DISC 2009. LNCS, vol. 5805, pp. 423–435. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04355-0_44 CrossRefGoogle Scholar
  8. 8.
    Broder, A.: Generating random spanning trees. In: 30th Annual Symposium on Foundations of Computer Science, pp. 442–447 (1989)Google Scholar
  9. 9.
    Chalopin, J., Das, S., Gawrychowski, P., Kosowski, A., Labourel, A., Uznanski, P.: Lock-in problem for parallel rotor-router walks. CoRR abs/1407.3200 (2014)Google Scholar
  10. 10.
    Chevaleyre, Y.: Theoretical analysis of the multi-agent patrolling problem. In: IAT, pp. 302–308 (2004)Google Scholar
  11. 11.
    Collins, A., Czyzowicz, J., Gasieniec, L., Kosowski, A., Kranakis, E., Krizanc, D., Martin, R., Morales Ponce, O.: Optimal patrolling of fragmented boundaries. In: Proceedings of SPAA (2013)Google Scholar
  12. 12.
    Czyzowicz, J., Gąsieniec, L., Kosowski, A., Kranakis, E.: Boundary patrolling by mobile agents with distinct maximal speeds. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 701–712. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23719-5_59 CrossRefGoogle Scholar
  13. 13.
    Czyzowicz, J., Georgiou, K., Kranakis, E., MacQuarrie, F., Pajak, D.: Fence patrolling with two-speed robots. In: Proceedings of ICORES 2016, 5th International Conference on Operations Research and Enterprise Systems, Rome, Italy, 23–25 February 2016 (2016)Google Scholar
  14. 14.
    Dereniowski, D., Kosowski, A., Pajak, D., Uznanski, P.: Bounds on the cover time of parallel rotor walks. In: STACS 2014, Lyon, France, 5–8 March 2014, pp. 263–275 (2014)Google Scholar
  15. 15.
    Dumitrescu, A., Ghosh, A., Tóth, C.D.: On fence patrolling by mobile agents. Electr. J. Comb. 21(3), P3.4 (2014)MathSciNetMATHGoogle Scholar
  16. 16.
    Elmaliach, Y., Agmon, N., Kaminka, G.A.: Multi-robot area patrol under frequency constraints. Ann. Math. Artif. Intell. 57(3–4), 293–320 (2009)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Elmaliach, Y., Shiloni, A., Kaminka, G.A.: A realistic model of frequency-based multi-robot polyline patrolling. In: AAMAS, vol. 1, pp. 63–70 (2008)Google Scholar
  18. 18.
    Elor, Y., Bruckstein, A.M.: Autonomous multi-agent cycle based patrolling. In: Dorigo, M., et al. (eds.) ANTS 2010. LNCS, vol. 6234, pp. 119–130. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15461-4_11 CrossRefGoogle Scholar
  19. 19.
    Gabriely, Y., Rimon, E.: Spanning-tree based coverage of continuous areas by a mobile robot. In: ICRA, pp. 1927–1933 (2001)Google Scholar
  20. 20.
    Hazon, N., Kaminka, G.A.: On redundancy, efficiency, and robustness in coverage for multiple robots. Rob. Auton. Syst. 56, 1102–1114 (2008)CrossRefGoogle Scholar
  21. 21.
    Kawamura, A., Kobayashi, Y.: Fence patrolling by mobile agents with distinct speeds. In: Chao, K.-M., Hsu, T., Lee, D.-T. (eds.) ISAAC 2012. LNCS, vol. 7676, pp. 598–608. Springer, Heidelberg (2012). doi:10.1007/978-3-642-35261-4_62 CrossRefGoogle Scholar
  22. 22.
    Kosowski, A., Pająk, D.: Does adding more agents make a difference? A case study of cover time for the rotor-router. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8573, pp. 544–555. Springer, Heidelberg (2014). doi:10.1007/978-3-662-43951-7_46 Google Scholar
  23. 23.
    Kranakis, E., Krizanc, D.: Optimization problems in infrastructure security. In: Garcia-Alfaro, J., Kranakis, E., Bonfante, G. (eds.) FPS 2015. LNCS, vol. 9482, pp. 3–13. Springer, Heidelberg (2016). doi:10.1007/978-3-319-30303-1_1 CrossRefGoogle Scholar
  24. 24.
    Machado, A., Ramalho, G., Zucker, J.-D., Drogoul, A.: Multi-agent patrolling: an empirical analysis of alternative architectures. In: Simão Sichman, J., Bousquet, F., Davidsson, P. (eds.) MABS 2002. LNCS (LNAI), vol. 2581, pp. 155–170. Springer, Heidelberg (2003). doi:10.1007/3-540-36483-8_11 CrossRefGoogle Scholar
  25. 25.
    Marino, A., Parker, L.E., Antonelli, G., Caccavale, F.: Behavioral control for multi-robot perimeter patrol: a finite state automata approach. In: ICRA, pp. 831–836 (2009)Google Scholar
  26. 26.
    Marino, A., Parker, L.E., Antonelli, G., Caccavale, F., Chiaverini, S.: A fault-tolerant modular control approach to multi-robot perimeter patrol. In: Robotics and Biomimetics (ROBIO), pp. 735–740 (2009)Google Scholar
  27. 27.
    Pasqualetti, F., Franchi, A., Bullo, F.: On optimal cooperative patrolling. In: CDC, pp. 7153–7158 (2010)Google Scholar
  28. 28.
    Portugal, D., Rocha, R.: A survey on multi-robot patrolling algorithms. In: Camarinha-Matos, L.M. (ed.) DoCEIS 2011. IAICT, vol. 349, pp. 139–146. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19170-1_15 CrossRefGoogle Scholar
  29. 29.
    Yanovski, V., Wagner, I.A., Bruckstein, A.M.: A distributed ant algorithm for efficiently patrolling a network. Algorithmica 37(3), 165–186 (2003)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Jurek Czyzowicz
    • 1
  • Adrian Kosowski
    • 2
  • Evangelos Kranakis
    • 3
  • Najmeh Taleb
    • 3
  1. 1.Dépt. d’informatiqueUniv. du Québec en OutaouaisGatineauCanada
  2. 2.Inria - LIAFAParis Diderot UniversityParisFrance
  3. 3.School of Computer ScienceCarleton UniversityOttawaCanada

Personalised recommendations