Advertisement

Anonymizable Ring Signature Without Pairing

  • Olivier Blazy
  • Xavier Bultel
  • Pascal Lafourcade
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10128)

Abstract

Ring signature is a well-known cryptographic primitive that allows any user who has a signing key to anonymously sign a message according to a group of users. Some years ago, Hoshino et al. propose a new kind of ring signature where anybody can transform a digital signature into an anonymous signature according to a chosen group of users; authors present a pairing-based construction that is secure under the gap Diffie-Hellman assumption in the random oracle model. However this scheme is quite inefficient for large group since the generation of the anonymous signature requires a number of pairing computations that is linear in the size of the group. In this paper, we give a more efficient anonymizable signature scheme without pairing. Our anonymization algorithm requires n exponentiations in a prime order group where n is the group size. Our proposal is secure under the discrete logarithm assumption in the random oracle model, which is a more standard assumption.

References

  1. 1.
    Bender, A., Katz, J., Morselli, R.: Ring signatures: stronger definitions, and constructions without random oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 60–79. Springer, Heidelberg (2006). doi: 10.1007/11681878_4 CrossRefGoogle Scholar
  2. 2.
    Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-28628-8_3 CrossRefGoogle Scholar
  3. 3.
    Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. J. Cryptology 17(4), 297–319 (2004)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of partial knowledge and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). doi: 10.1007/3-540-48658-5_19 Google Scholar
  5. 5.
    Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). doi: 10.1007/3-540-47721-7_12 CrossRefGoogle Scholar
  6. 6.
    Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18, 186–208 (1989)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Hoshino, F., Kobayashi, T., Suzuki, K.: Anonymizable signature and its construction from pairings. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing 2010. LNCS, vol. 6487, pp. 62–77. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-17455-1_5 CrossRefGoogle Scholar
  8. 8.
    Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001). doi: 10.1007/3-540-45682-1_32 CrossRefGoogle Scholar
  9. 9.
    Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1990). doi: 10.1007/0-387-34805-0_22 CrossRefGoogle Scholar
  10. 10.
    Suzuki, K., Hoshino, F., Kobayashi, T.: Relinkable ring signature. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 518–536. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-10433-6_35 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Olivier Blazy
    • 1
  • Xavier Bultel
    • 2
  • Pascal Lafourcade
    • 2
  1. 1.XlimUniversité de LimogesLimogesFrance
  2. 2.LIMOSUniversité Clermont AuvergneClermont-FerrandFrance

Personalised recommendations