Advertisement

Symbolic Semantics for Multiparty Interactions in the Link-Calculus

  • Linda Brodo
  • Carlos Olarte
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10139)

Abstract

The link-calculus is a model for concurrency that extends the point-to-point communication discipline of Milner’s CCS with multiparty interactions. Links are used to build chains describing how information flows among the different agents participating in a multiparty interaction. The inherent non-determinism in deciding both, the number of participants in an interaction and how they synchronize, makes it difficult to devise efficient verification techniques for this language. In this paper we propose a symbolic semantics and a symbolic bisimulation for the link-calculus which are more amenable to automating reasoning. Unlike the operational semantics of the link-calculus, the symbolic semantics is finitely branching and it represents, compactly, a possibly infinite number of transitions. We give necessary and sufficient conditions to efficiently check the validity of symbolic configurations. We also implement an interpreter based on this semantics and we show how to use such implementation for verification.

Keywords

Operational Semantic Label Transition System Virtual Link Link Chain Virtual Action 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bodei, C., Brodo, L., Bruni, R.: Open multiparty interaction. In: Martí-Oliet, N., Palomino, M. (eds.) WADT 2012. LNCS, vol. 7841, pp. 1–23. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-37635-1_1 CrossRefGoogle Scholar
  2. 2.
    Bodei, C., Brodo, L., Bruni, R., Chiarugi, D.: A flat process calculus for nested membrane interactions. Sci. Ann. Comp. Sci. 24(1), 91–136 (2014)MathSciNetGoogle Scholar
  3. 3.
    Calder, M., Shankland, C.: A symbolic semantics and bisimulation for full LOTOS. In: Kim, M., Chin, B., Kang, S., Lee, D. (eds.) IFIP Conference Proceedings, FORTE, vol. 197, pp. 185–200. Kluwer (2001)Google Scholar
  4. 4.
    Gorrieri, R., Versari, C.: Introduction to Concurrency Theory - Transition Systems and CCS. Texts in Theoretical Computer Science. An EATCS Series. Springer, Cham (2015)CrossRefMATHGoogle Scholar
  5. 5.
    Hennessy, M., Lin, H.: Symbolic bisimulations. Theor. Comput. Sci. 138(2), 353–389 (1995)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge University Press, New York (1996)CrossRefMATHGoogle Scholar
  7. 7.
    Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall Inc, Upper Saddle River (1985)MATHGoogle Scholar
  8. 8.
    Lehmann, D.J., Rabin, M.O.: On the advantages of free choice: a symmetric and fully distributed solution to the dining philosophers problem. In: White, J., Lipton, R.J., Goldberg, P.C. (eds.) POPL, pp. 133–138. ACM Press (1981)Google Scholar
  9. 9.
    Milner, R.: A Calculus of Communicating Systems. LNCS, vol. 92. Springer, Heidelberg (1980)MATHGoogle Scholar
  10. 10.
    Montanari, U., Sammartino, M.: Network conscious pi-calculus: a concurrent semantics. In: Proceedings of Mathematical Foundations of Programming Semantics (MFPS), Electronic Notes in Theoretical Computer Science, vol. 286, pp. 291–306. Elsevier (2012)Google Scholar
  11. 11.
    Nestmann, U.: On the expressive power of joint input. Electron. Notes Theor. Comput. Sci. 16(2), 145–152 (1998)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Verdejo, A.: Building tools for LOTOS symbolic semantics in maude. In: Peled, D.A., Vardi, M.Y. (eds.) FORTE 2002. LNCS, vol. 2529, pp. 292–307. Springer, Heidelberg (2002). doi: 10.1007/3-540-36135-9_19 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Dipartimento di Scienze Politiche, Scienze della Comunicazione e Ingegneria dell’InformazioneUniversità di SassariSassariItaly
  2. 2.ECT - Universidade Federal do Rio Grande do NorteNatalBrazil

Personalised recommendations