How to Draw a Planarization

  • Thomas Bläsius
  • Marcel Radermacher
  • Ignaz Rutter
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10139)

Abstract

We study the problem of computing straight-line drawings of non-planar graphs with few crossings. We assume that a crossing-minimization algorithm is applied first, yielding a planarization, i.e., a planar graph with a dummy vertex for each crossing, that fixes the topology of the resulting drawing. We present and evaluate two different approaches for drawing a planarization in such a way that the edges of the input graph are as straight as possible. The first approach is based on the planarity-preserving force-directed algorithm ImPrEd [18], the second approach, which we call Geometric Planarization Drawing, iteratively moves vertices to their locally optimal positions in the given initial drawing.

References

  1. 1.
    Ábrego, B.M., Fernández-Merchant, S., Leaños, J., Salazar, G.: The maximum number of halving lines and the rectilinear crossing number of kn for n \(\le \) 27. Electron. Notes Discrete Math. 30, 261–266 (2008)Google Scholar
  2. 2.
    Buchheim, C., Chimani, M., Gutwenger, C., Jünger, M., Mutzel, P.: Crossings and planarization. In: Handbook of Graph Drawing and Visualization, pp. 43–85. Chapman and Hall/CRC (2013)Google Scholar
  3. 3.
    Chambers, E.W., Eppstein, D., Goodrich, M.T., Löffler, M.: Drawing graphs in the plane with a prescribed outer face and polynomial area. J. Graph Alg. Appl. 16(2), 243–259 (2012)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Didimo, W., Liotta, G., Romeo, S.A.: Topology-driven force-directed algorithms. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 165–176. Springer, Heidelberg (2011). doi:10.1007/978-3-642-18469-7_15 CrossRefGoogle Scholar
  5. 5.
    Dwyer, T., Marriott, K., Wybrow, M.: Topology preserving constrained graph layout. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 230–241. Springer, Heidelberg (2009). doi:10.1007/978-3-642-00219-9_22 CrossRefGoogle Scholar
  6. 6.
    Feng, Q.-W., Cohen, R.F., Eades, P.: How to draw a planar clustered graph. In: Du, D.-Z., Li, M. (eds.) COCOON 1995. LNCS, vol. 959, pp. 21–30. Springer, Heidelberg (1995). doi:10.1007/BFb0030816 CrossRefGoogle Scholar
  7. 7.
    Grilli, L., Hong, S.-H., Kratochvíl, J., Rutter, I.: Drawing simultaneously embedded graphs with few bends. In: Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 40–51. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45803-7_4 Google Scholar
  8. 8.
    Gutwenger, C., Mutzel, P., Weiskircher, R.: Inserting an edge into a planar graph. Algorithmica 41(4), 289–308 (2005)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Hong, S.-H., Eades, P., Liotta, G., Poon, S.-H.: Fáry’s theorem for 1-planar graphs. In: Gudmundsson, J., Mestre, J., Viglas, T. (eds.) COCOON 2012. LNCS, vol. 7434, pp. 335–346. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32241-9_29 CrossRefGoogle Scholar
  10. 10.
    Huber, S., Held, M.: Motorcycle graphs: stochastic properties motivate an efficient yet simple implementation. J. Exper. Algo. 16, 1–3 (2011)MathSciNetMATHGoogle Scholar
  11. 11.
    Huber, S., Held, M.: A fast straight-skeleton algorithm based on generalized motorcycle graphs. Int. J. Comput. Geom. Appl. 22(05), 471–498 (2012)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Joe, B., Simpson, R.B.: Corrections to Lee’s visibility polygon algorithm. BIT Num. Math. 27(4), 458–473 (1987)CrossRefMATHGoogle Scholar
  13. 13.
    Kant, G.: Drawing planar graphs using the canonical ordering. Algorithmica 16(1), 4–32 (1996)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Mnev, N.E.: The universality theorems on the classification problem of configuration varieties and convex polytopes varieties. In: Viro, O.Y., Vershik, A.M. (eds.) Topology and Geometry — Rohlin Seminar. LNM, vol. 1346, pp. 527–543. Springer, Heidelberg (1988). doi:10.1007/BFb0082792 CrossRefGoogle Scholar
  15. 15.
    Nievergelt, J., Preparata, F.P.: Plane-sweep algorithms for intersecting geometric figures. Commun. ACM 25(10), 739–747 (1982)CrossRefMATHGoogle Scholar
  16. 16.
    Schaefer, M.: Complexity of some geometric and topological problems. In: Eppstein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 334–344. Springer, Heidelberg (2010). doi:10.1007/978-3-642-11805-0_32 CrossRefGoogle Scholar
  17. 17.
    Sheskin, D.J.: Handbook of Parametric and Nonparametric Statistical Procedures. Chapman and Hall/CRC (2003)Google Scholar
  18. 18.
    Simonetto, P., Archambault, D., Auber, D., Bourqui, R.: ImPrEd: an improved force-directed algorithm that prevents nodes from crossing edges. Comput. Graph. Forum (EuroVis 2011) 30(3), 1071–1080 (2011)CrossRefGoogle Scholar
  19. 19.
    Tamassia, R.: On embedding a graph in the grid with the minimum number of bends. SIAM J. Comput. 16(3), 421–444 (1987)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Tutte, W.T.: How to draw a graph. Proc. Lond. Math. Soc. s3–13(1), 743–767 (1963)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Thomas Bläsius
    • 1
    • 2
  • Marcel Radermacher
    • 1
  • Ignaz Rutter
    • 1
  1. 1.Faculty of InformaticsKarlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.Research Group Algorithm EngineeringHasso Plattner InstitutePotsdamGermany

Personalised recommendations