Exact Quantum Query Complexity of \(\text {EXACT}_{k,l}^n\)

  • Andris Ambainis
  • Jānis IraidsEmail author
  • Daniel Nagaj
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10139)


In the exact quantum query model a successful algorithm must always output the correct function value. We investigate the function that is true if exactly k or l of the n input bits given by an oracle are 1. We find an optimal algorithm (for some cases), and a nontrivial general lower and upper bound on the minimum number of queries to the black box.



This research was supported by the ERC Advanced Grant MQC, Latvian State Research Programme NexIT Project No. 1, EU FP7 project QALGO, the People Programme (Marie Curie Actions) EU’s 7th Framework Programme under REA grant agreement No. 609427, Slovak Academy of Sciences, and the Slovak Research and Development Agency grant APVV-14-0878 QETWORK.


  1. 1.
    Ambainis, A.: Superlinear advantage for exact quantum algorithms. In: Proceedings of the 45th Annual ACM Symposium on Theory of Computing, pp. 891–900. ACM (2013).
  2. 2.
    Ambainis, A., Balodis, K., Belovs, A., Lee, T., Santha, M., Smotrovs, J.: Separations in query complexity based on pointer functions. In: Proceedings of the 48th Annual ACM Symposium on Theory of Computing, pp. 800–813. ACM (2016)Google Scholar
  3. 3.
    Ambainis, A., Iraids, J., Nagaj, D.: Exact quantum query complexity of \(\text{EXACT}_{k,l}^n\). arXiv preprint abs/1608.02374 (2016).
  4. 4.
    Ambainis, A., Iraids, J., Smotrovs, J.: Exact quantum query complexity of EXACT and THRESHOLD. In: TQC, pp. 263–269 (2013)Google Scholar
  5. 5.
    Beals, R., Buhrman, H., Cleve, R., Mosca, M., de Wolf, R.: Quantum lower bounds by polynomials. J. ACM 48(4), 778–797 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Brassard, G., Høyer, P.: An exact quantum polynomial-time algorithm for Simon’s problem. In: 1997 Proceedings of the Fifth Israeli Symposium on Theory of Computing and Systems, pp. 12–23, June 1997Google Scholar
  7. 7.
    Cleve, R., Ekert, A., Macchiavello, C., Mosca, M.: Quantum algorithms revisited. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 454(1969), 339–354 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 439(1907), 553–558 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: Limit on the speed of quantum computation in determining parity. Phys. Rev. Lett. 81, 5442–5444 (1998). doi: 10.1103/PhysRevLett.81.5442 CrossRefGoogle Scholar
  10. 10.
    von Zur Gathen, J., Roche, J.R.: Polynomials with two values. Combinatorica 17(3), 345–362 (1997). doi: 10.1007/BF01215917 MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Lee, T., Prakash, A., de Wolf, R., Yuen, H.: On the sum-of-squares degree of symmetric quadratic functions. In: Raz, R. (ed.) 31st Conference on Computational Complexity (CCC 2016), Leibniz International Proceedings in Informatics (LIPIcs), vol. 50, pp. 17:1–17:31. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2016).
  12. 12.
    Midrijānis, G.: Exact quantum query complexity for total boolean functions. arXiv preprint quant-ph/0403168 (2004).
  13. 13.
    Montanaro, A., Jozsa, R., Mitchison, G.: On exact quantum query complexity. Algorithmica 71(4), 775–796 (2015). doi: 10.1007/s00453-013-9826-8 MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Qiu, D., Zheng, S.: Characterizations of symmetrically partial boolean functions with exact quantum query complexity. arXiv preprint abs/1603.06505 (2016).

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Faculty of ComputingUniversity of LatviaRigaLatvia
  2. 2.Institute of PhysicsSlovak Academy of SciencesBratislavaSlovakia

Personalised recommendations