Exact Quantum Query Complexity of \(\text {EXACT}_{k,l}^n\)

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10139)


In the exact quantum query model a successful algorithm must always output the correct function value. We investigate the function that is true if exactly k or l of the n input bits given by an oracle are 1. We find an optimal algorithm (for some cases), and a nontrivial general lower and upper bound on the minimum number of queries to the black box.


  1. 1.
    Ambainis, A.: Superlinear advantage for exact quantum algorithms. In: Proceedings of the 45th Annual ACM Symposium on Theory of Computing, pp. 891–900. ACM (2013). http://dl.acm.org/citation.cfm?id=2488721
  2. 2.
    Ambainis, A., Balodis, K., Belovs, A., Lee, T., Santha, M., Smotrovs, J.: Separations in query complexity based on pointer functions. In: Proceedings of the 48th Annual ACM Symposium on Theory of Computing, pp. 800–813. ACM (2016)Google Scholar
  3. 3.
    Ambainis, A., Iraids, J., Nagaj, D.: Exact quantum query complexity of \(\text{EXACT}_{k,l}^n\). arXiv preprint abs/1608.02374 (2016). http://arxiv.org/abs/1608.02374
  4. 4.
    Ambainis, A., Iraids, J., Smotrovs, J.: Exact quantum query complexity of EXACT and THRESHOLD. In: TQC, pp. 263–269 (2013)Google Scholar
  5. 5.
    Beals, R., Buhrman, H., Cleve, R., Mosca, M., de Wolf, R.: Quantum lower bounds by polynomials. J. ACM 48(4), 778–797 (2001)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Brassard, G., Høyer, P.: An exact quantum polynomial-time algorithm for Simon’s problem. In: 1997 Proceedings of the Fifth Israeli Symposium on Theory of Computing and Systems, pp. 12–23, June 1997Google Scholar
  7. 7.
    Cleve, R., Ekert, A., Macchiavello, C., Mosca, M.: Quantum algorithms revisited. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 454(1969), 339–354 (1998)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 439(1907), 553–558 (1992)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: Limit on the speed of quantum computation in determining parity. Phys. Rev. Lett. 81, 5442–5444 (1998). doi:10.1103/PhysRevLett.81.5442 CrossRefGoogle Scholar
  10. 10.
    von Zur Gathen, J., Roche, J.R.: Polynomials with two values. Combinatorica 17(3), 345–362 (1997). doi:10.1007/BF01215917 MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Lee, T., Prakash, A., de Wolf, R., Yuen, H.: On the sum-of-squares degree of symmetric quadratic functions. In: Raz, R. (ed.) 31st Conference on Computational Complexity (CCC 2016), Leibniz International Proceedings in Informatics (LIPIcs), vol. 50, pp. 17:1–17:31. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2016). http://drops.dagstuhl.de/opus/volltexte/2016/5838
  12. 12.
    Midrijānis, G.: Exact quantum query complexity for total boolean functions. arXiv preprint quant-ph/0403168 (2004). http://arxiv.org/abs/quant-ph/0403168
  13. 13.
    Montanaro, A., Jozsa, R., Mitchison, G.: On exact quantum query complexity. Algorithmica 71(4), 775–796 (2015). doi:10.1007/s00453-013-9826-8 MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Qiu, D., Zheng, S.: Characterizations of symmetrically partial boolean functions with exact quantum query complexity. arXiv preprint abs/1603.06505 (2016). http://arxiv.org/abs/1603.06505

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Faculty of ComputingUniversity of LatviaRigaLatvia
  2. 2.Institute of PhysicsSlovak Academy of SciencesBratislavaSlovakia

Personalised recommendations