Bamboo Garden Trimming Problem (Perpetual Maintenance of Machines with Different Attendance Urgency Factors)

  • Leszek Gąsieniec
  • Ralf KlasingEmail author
  • Christos Levcopoulos
  • Andrzej Lingas
  • Jie Min
  • Tomasz Radzik
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10139)


A garden G is populated by \(n\ge 1\) bamboos \(b_1, b_2, ..., b_n\) with the respective daily growth rates \(h_1 \ge h_2 \ge \dots \ge h_n\). It is assumed that the initial heights of bamboos are zero. The robotic gardener or simply a robot maintaining the bamboo garden is attending bamboos and trimming them to height zero according to some schedule. The Bamboo Garden Trimming Problem, or simply BGT, is to design a perpetual schedule of cuts to maintain the elevation of bamboo garden as low as possible. The bamboo garden is a metaphor for a collection of machines which have to be serviced with different frequencies, by a robot which can service only one machine during a visit. The objective is to design a perpetual schedule of servicing the machines which minimizes the maximum (weighted) waiting time for servicing.

We consider two variants of BGT. In discrete BGT the robot is allowed to trim only one bamboo at the end of each day. In continuous BGT the bamboos can be cut at any time, however, the robot needs time to move from one bamboo to the next one and this time is defined by a weighted network of connections.

For discrete BGT, we show a simple 4-approximation algorithm and, by exploiting relationship between BGT and the classical Pinwheel scheduling problem, we obtain also a 2-approximation and even a closer approximation for more balanced growth rates. For continuous BGT, we propose approximation algorithms which achieve approximation ratios \(O(\log (h_1/h_n))\) and \(O(\log n)\).


Virtual Machine Approximation Ratio Steiner Tree Online Schedule Daily Growth Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Alshamrani, S., Kowalski, D.R., Gąsieniec, L.: How reduce max algorithm behaves with symptoms appearance on virtual machines in clouds. In: Proceedings of IEEE International Conference CIT/IUCC/DASC/PICOM, pp. 1703–1710 (2015)Google Scholar
  2. 2.
    Baruah, S.K., Cohen, N.K., Plaxton, C.G., Varvel, D.A.: Proportionate progress: a notion of fairness in resource allocation. Algorithmica 15(6), 600–625 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Baruah, S.K., Lin, S.-S.: Pfair scheduling of generalized pinwheel task systems. IEEE Trans. Comput. 47(7), 812–816 (1998)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bender, M.A., Fekete, S.P., Kröller, A., Mitchell, J.S.B., Liberatore, V., Polishchuk, V., Suomela, J.: The minimum backlog problem. Theor. Comput. Sci. 605, 51–61 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bodlaender, M.H.L., Hurkens, C.A.J., Kusters, V.J.J., Staals, F., Woeginger, G.J., Zantema, H.: Cinderella versus the Wicked Stepmother. In: Baeten, J.C.M., Ball, T., Boer, F.S. (eds.) TCS 2012. LNCS, vol. 7604, pp. 57–71. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-33475-7_5 CrossRefGoogle Scholar
  6. 6.
    Chan, M.Y., Chin, F.Y.L.: General schedulers for the pinwheel problem based on double-integer reduction. IEEE Trans. Comput. 41(6), 755–768 (1992)CrossRefGoogle Scholar
  7. 7.
    Chan, M.Y., Chin, F.: Schedulers for larger classes of pinwheel instances. Algorithmica 9(5), 425–462, May 1993Google Scholar
  8. 8.
    Chrobak, M., Csirik, J., Imreh, C., Noga, J., Sgall, J., Woeginger, G.J.: The buffer minimization problem for multiprocessor scheduling with conflicts. In: Orejas, F., Spirakis, P.G., Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 862–874. Springer, Berlin (2001). doi: 10.1007/3-540-48224-5_70 CrossRefGoogle Scholar
  9. 9.
    Collins, A., Czyzowicz, J., Gąsieniec, L., Kosowski, A., Kranakis, E., Krizanc, D., Martin, R., Ponce, O.M.: Optimal patrolling of fragmented boundaries. In: Proceedings of the Twenty-fifth Annual ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2013, New York, USA, pp. 241–250 (2013)Google Scholar
  10. 10.
    Czyzowicz, J., Gąsieniec, L., Kosowski, A., Kranakis, E.: Boundary patrolling by mobile agents with distinct maximal speeds. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 701–712. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-23719-5_59 CrossRefGoogle Scholar
  11. 11.
    Czyzowicz, J., Gasieniec, L., Kosowski, A., Kranakis, E., Krizanc, D., Taleb, N.: When Patrolmen Become Corrupted: Monitoring a Graph Using Faulty Mobile Robots. In: Elbassioni, K., Makino, K. (eds.) ISAAC 2015. LNCS, vol. 9472, pp. 343–354. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-48971-0_30 CrossRefGoogle Scholar
  12. 12.
    Fishburn, P.C., Lagarias, J.C.: Pinwheel scheduling: achievable densities. Algorithmica 34(1), 14–38, September 2002Google Scholar
  13. 13.
    Holte, R., Mok, A., Rosier, L., Tulchinsky, I., Varvel, D.: The pinwheel: a real-time scheduling problem. In: II: Software Track, Proceedings of the Twenty-Second Annual Hawaii International Conference on System Sciences, vol. 2, pp. 693–702, January 1989Google Scholar
  14. 14.
    Holte, R., Rosier, L., Tulchinsky, I., Varvel, D.: Pinwheel scheduling with two distinct numbers. Theor. Comput. Sci. 100(1), 105–135 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Kawamura, A., Kobayashi, Y.: Fence patrolling by mobile agents with distinct speeds. Distrib. Comput. 28(2), 147–154 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Lin, S.-S., Lin, K.-J.: A pinwheel scheduler for three distinct numbers with a tight schedulability bound. Algorithmica 19(4), 411–426, December 1997Google Scholar
  17. 17.
    Ntafos, S.: On gallery watchmen in grids. Inf. Process. Lett. 23(2), 99–102 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Romer, T.H., Rosier, L.E.: An algorithm reminiscent of euclidean-gcd for computing a function related to pinwheel scheduling. Algorithmica 17(1), 1–10 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Serafini, P., Ukovich, W.: A mathematical model for periodic scheduling problems. SIAM J. Discrete Math. 2(4), 550–581 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Urrutia, J.: Art gallery and illumination problems. In: Handbook of Computational Geometry, vol. 1, no. 1, pp. 973–1027 (2000)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Leszek Gąsieniec
    • 1
  • Ralf Klasing
    • 2
    Email author
  • Christos Levcopoulos
    • 3
  • Andrzej Lingas
    • 3
  • Jie Min
    • 1
  • Tomasz Radzik
    • 4
  1. 1.Department of Computer ScienceUniversity of LiverpoolLiverpoolUK
  2. 2.CNRS, LaBRI, Université de BordeauxTalenceFrance
  3. 3.Department of Computer ScienceLund UniversityLundSweden
  4. 4.Department of InformaticsKing’s College LondonLondonUK

Personalised recommendations