Advertisement

Selfish Transportation Games

  • Dimitris FotakisEmail author
  • Laurent Gourvès
  • Jérôme Monnot
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10139)

Abstract

We study a natural strategic situation arising from the selection of shared means of transportation. Some clients (the players) are located on different nodes of a given graph and they want to be transported from their location to a common destination point (e.g. school, airport). A fixed number of resources (also called buses) is available and each client has to choose exactly one. Individual costs depend on the route chosen by the buses and the distance between the nodes. We investigate the case where each bus has a static permutation which prescribes the order by which the clients are visited. We identify the cases admitting a pure strategy equilibrium and consider the construction of an equilibrium, via a dedicated algorithm, or a dynamics. We also determine the price of anarchy and the price of stability for two natural social functions.

Keywords

Resource allocation game Existence and computation of equilibria Price of anarchy/stability 

References

  1. 1.
    Anshelevich, E., Dasgupta, A., Kleinberg, J.M., Tardos, É., Wexler, T., Roughgarden, T.: The price of stability for network design with fair cost allocation. In: 45th Symposium on Foundations of Computer Science (FOCS 2004), 17–19 , Rome, Italy, Proceedings, pp. 295–304. IEEE Computer Society, October 2004Google Scholar
  2. 2.
    Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J.: The Traveling Salesman Problem: A Computational Study. Princeton Series in Applied Mathematics. Princeton University Press, Princeton (2007)zbMATHGoogle Scholar
  3. 3.
    Aumann, R.J.: Acceptable points in general cooperative n-person games. In: Tucker, A.W., Luce, R.D. (eds.) Contribution to the Theory of Games. Annals of Mathematics Studies, 40 volume IV, pp. 287–324. Princeton University Press (1959)Google Scholar
  4. 4.
    Azar, Y., Jain, K., Mirrokni, V.S.: (Almost) optimal coordination mechanisms for unrelated machine scheduling. In: Shang-Hua Teng, (ed.) Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, San Francisco, California, USA, January 20–22, pp. 323–332. SIAM (2008)Google Scholar
  5. 5.
    Bistaffa, F., Farinelli, A., Ramchurn, S.D.: Sharing rides with friends: a coalition formation algorithm for ridesharing. In: Bonet, B., Koenig, S. (eds.) Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, January 25–30, Austin, Texas, USA, pp. 608–614. AAAI Press (2015)Google Scholar
  6. 6.
    Borm, P., Hamers, H., Hendrickx, R.: Operations research games: a survey. Top 9(2), 139–199 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Caragiannis, I.: Efficient coordination mechanisms for unrelated machine scheduling. Algorithmica 66(3), 512–540 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cechlárová, K.: Stable partition problem. In: Kao, M.-Y. (ed.) Encyclopedia of Algorithms, pp. 1–99. Springer, New York (2008). doi: 10.1007/978-0-387-30162-4_397 Google Scholar
  9. 9.
    Christodoulou, G., Koutsoupias, E., Nanavati, A.: Coordination mechanisms. Theor. Comput. Sci. 410(36), 3327–3336 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Correa, J.R., Stier-Moses, N.E.: Wardrop equilibria. Wiley Encyclopedia of Operations Research and Management Science (2011)Google Scholar
  11. 11.
    Drèze, J.H., Greenberg, J.: Hedonic coalitions: optimality and stability. Econometrica 48(4), 987–1003 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Engevall, S., Lundgren, M., Värbrand, P.: The heterogeneous vehicle - routing game. Transp. Sci. 38(1), 71–85 (2004)CrossRefGoogle Scholar
  13. 13.
    Fekete, S.P., Fleischer, R., Fraenkel, A., Schmitt, M.: Traveling salesmen in the presence of competition. Theor. Comput. Sci. 313(3), 377–392 (2004). Algorithmic Combinatorial Game TheoryMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Feldman, M., Lewin-Eytan, L., Naor, J.: Hedonic clustering games. In: Blelloch, G.E., Herlihy, M. (eds.) 24th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2012, Pittsburgh, PA, USA, June 25–27, pp. 267–276. ACM (2012)Google Scholar
  15. 15.
    Gairing, M., Savani, R.: Computing stable outcomes in hedonic games. In: Kontogiannis, S., Koutsoupias, E., Spirakis, P.G. (eds.) SAGT 2010. LNCS, vol. 6386, pp. 174–185. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-16170-4_16 CrossRefGoogle Scholar
  16. 16.
    Kamar, E., Horvitz, E.: Collaboration, shared plans in the open world: studies of ridesharing. In: Boutilier, C. (ed.) Proceedings of the 21st International Joint Conference on Artificial Intelligence, IJCAI, Pasadena, California, USA, July 11–17, p. 187 (2009)Google Scholar
  17. 17.
    Kendall, G., Li, J.: Competitive travelling salesmen problem: a hyper-heuristic approach. J. Oper. Res. Soc. 64, 208–216 (2013)CrossRefGoogle Scholar
  18. 18.
    Kleiner, A., Nebel, B., Ziparo, V.A.: A mechanism for dynamic ride sharing based on parallel auctions. In: Walsh, T. (ed.) Proceedings of the 22nd International Joint Conference on Artificial Intelligence, IJCAI, Barcelona, Catalonia, Spain, July 16–22, pp. 266–272. IJCAI/AAAI (2011)Google Scholar
  19. 19.
    Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999). doi: 10.1007/3-540-49116-3_38 CrossRefGoogle Scholar
  20. 20.
    Lau, H.C., Agussurja, L., Cheng, S.-F., Tan, P.J.: A multi-objective memetic algorithm for vehicle resource allocation in sustainable transportation planning. In: Rossi, F. (ed.) Proceedings of the 23rd International Joint Conference on Artificial Intelligence, IJCAI, Beijing, China, August 3–9. IJCAI/AAAI (2013)Google Scholar
  21. 21.
    Nash, J.: Non-cooperative games. Ann. Math. 54(2), 286–295 (1951)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Toth, P., Vigo, D. (eds.): The Vehicle Routing Problem. Society for Industrial and Applied Mathematics, Philadelphia (2001)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Dimitris Fotakis
    • 1
    Email author
  • Laurent Gourvès
    • 2
  • Jérôme Monnot
    • 2
  1. 1.National Technical University of AthensAthensGreece
  2. 2.Université Paris-Dauphine, PSL Research University, CNRS UMR [7243], LAMSADEParisFrance

Personalised recommendations