Extraction of Fragments and Waves After Impact Damage in Particle-Based Simulations

  • Patrick DiehlEmail author
  • Michael Bußler
  • Dirk Pflüger
  • Steffen Frey
  • Thomas Ertl
  • Filip Sadlo
  • Marc Alexander Schweitzer
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 115)


The analysis of simulation results and the verification against experimental data is essential to develop and interpret simulation models for impact damage. We present two visualization techniques to post-process particle-based simulation data, and we highlight new aspects for the quantitative comparison with experimental data. As the underlying simulation model we consider the particle method Peridynamics, a non-local generalization of continuum mechanics. The first analysis technique is an extended component labeling algorithm to extract the fragment size and the corresponding histograms. The distribution of the fragment size can be obtained by real-world experiments as demonstrated in Schram and Meyer (Simulating the formation and evolution of behind armor debris fields. ARL-RP 109, U.S. Army Research Laboratory, 2005), Vogler et al. (Int J Impact Eng 29:735–746, 2003). The second approach focuses on the visualization of the stress after an impact. Here, the particle-based data is re-sampled and rendered with standard volume rendering techniques to address the interference pattern of the stress wave after reflection at the boundary. For the extraction and visual analysis, we used the widely-used Stanford bunny as a complex geometry. For a quantitative study with a simple geometry, the edge-on impact experiment (Schradin, Scripts German Acad Aeronaut Res 40:21–68, 1939; Strassburger, Int J Appl Ceram Technol 1:1:235–242, 2004; Kawai et al., Procedia Eng 103:287–293, 2015) can be applied. With these new visualization approaches, new insights for the quantitative comparison of fragmentation and wave propagation become intuitively accessible.


Smooth Particle Hydrodynamic Smooth Particle Hydrodynamic Impact Damage Spectral Norm Visualization Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    F. Bobaru, G. Zhang, Why do cracks branch? a peridynamic investigation of dynamic brittle fracture. Int. J. Fract. 196, 1–40 (2016)Google Scholar
  2. 2.
    P. Diehl, M.A. Schweitzer, Simulation of wave propagation and impact damage in brittle materials using peridynamics, in Recent Trends in Computational Engineering – CE2014, ed. by M. Mehl, M. Bischoff, M. Schäfer. Lecture Notes in Computational Science and Engineering (Springer, Berlin, 2015)Google Scholar
  3. 3.
    J. Fineberg, M. Marder, Instability in dynamic fracture. Phys. Rep. 313 (1–2), 1–108 (1999)MathSciNetCrossRefGoogle Scholar
  4. 4.
    J.T. Foster, Dynamic crack initiation toughness: experiments and peridynamic modeling. Ph.D. thesis, Purdue University (2009)Google Scholar
  5. 5.
    F. Franzelin, P. Diehl, D. Pflüger, Non-intrusive uncertainty quantification with sparse grids for multivariate peridynamic simulations, in Meshfree Methods for Partial Differential Equations VII, ed. by M. Griebel, M.A. Schweitzer. Lecture Notes in Computational Science and Engineering, vol. 100 (Springer International Publishing, Berlin, 2015), pp. 115–143 (English)Google Scholar
  6. 6.
    S.F. Henke, S. Shanbhag, Mesh sensitivity in peridynamic simulations. Comput. Phys. Commun. 185 (1), 181–193 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    J.F. Kalthoff, S. Winkler, Failure mode transition at high rates of shear loading, in Impact Loading and Dynamic Behavior of Materials, vol. 1, ed. by C.Y. Chiem, H.D. Kunze, L.W. Meyer (DGM Informationsgesellschaft Verlag, Oberursel, 1988), pp. 185–195Google Scholar
  8. 8.
    N. Kawai, S. Zama, W. Takemoto, K. Moriguchi, K. Arai, S. Hasegawa, E. Sato, Stress wave and damage propagation in transparent materials subjected to hypervelocity impact. Procedia Eng. 103, 287–293 (2015). Proceedings of the 2015 Hypervelocity Impact Symposium (HVIS 2015)Google Scholar
  9. 9.
    A. Kobayashi, N. Ohtani, T. Sato, Phenomenological aspects of viscoelastic crack propagation. J. Appl. Polym. Sci. 18 (6), 1625–1638 (1974)CrossRefGoogle Scholar
  10. 10.
    J.A. Levine, A.W. Bargteil, C. Corsi, J. Tessendorf, R. Geist, A peridynamic perspective on spring-mass fracture, in Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Aire-la-Ville, SCA ’14 (Eurographics Association, Copenhagen, 2014), pp. 47–55Google Scholar
  11. 11.
    E. Madenci, E. Oterkus, Benchmark problems, in Peridynamic Theory and its Applications, (Springer, Berlin, 2013), pp. 151–166Google Scholar
  12. 12.
    J.F. O’Brien, A.W. Bargteil, J.K. Hodgins, Graphical modeling and animation of ductile fracture, in Proceedings of ACM SIGGRAPH 2002 (ACM Press, New York, Aug 2002), pp. 291–294Google Scholar
  13. 13.
    J.M. Owen, SPH and material failure, in Proceedings from the 5LC 2005 (2005)Google Scholar
  14. 14.
    M.L. Parks, D.J. Littlewood, J.A. Mitchell, S.A. Silling, Peridigm users’ guide. Technical Report SAND2012-7800, Sandia National Laboratories (2012)Google Scholar
  15. 15.
    M. Pauly, R. Keiser, B. Adams, P. Dutré, M. Gross, L.J. Guibas, Meshless animation of fracturing solids. ACM Trans. Graph. 24 (3), 957–964 (2005)CrossRefGoogle Scholar
  16. 16.
    S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117 (1), 1–19 (1995)CrossRefzbMATHGoogle Scholar
  17. 17.
    G.R. Johnson, C.A. Gerlach, R.A. Stryk, T.J. Holmquist, N.L. Rowe, A quantitative assessment of computational results for behind armor Debris, in 23 rd International Symposium On Ballistics, April 2007Google Scholar
  18. 18.
    S. Raymond, V. Lemiale, R. Ibrahim, R. Lau, A meshfree study of the Kalthoff–Winkler experiment in 3d at room and low temperatures under dynamic loading using viscoplastic modelling. Eng. Anal. Bound. Elem. 42, 20–25 (2014). Advances on Meshfree and other Mesh reduction methods.Google Scholar
  19. 19.
    W. Riedel, S. Hiermaier, K. Thoma, Transient stress and failure analysis of impact experiments with ceramics. Mater. Sci. Eng. B 173, 139–147 (2010), ElsevierGoogle Scholar
  20. 20.
    H. Schradin, Physikalische Vorgänge bei hohen Belastungen und Belastungsgeschwindigikeiten (Physical processes at high loadings and loading rates). Scripts German Acad. Aeronaut. Res. 40, 21–68 (1939)Google Scholar
  21. 21.
    E. Sharon, J. Fineberg, Universal features of the microbranching instability in dynamic fracture. Philos. Mag. B 78 (2), 243–251 (1998)CrossRefGoogle Scholar
  22. 22.
    S.A. Silling, Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48 (1), 175–209 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    S.A. Silling, Dynamic fracture modeling with a meshfree peridynamic code, in Fluid and Solid Mechanics, ed. by K.J. Bathe, vol. 1. Massachusetts Institute of Technology (Elsevier, Amsterdam, 2003)Google Scholar
  24. 24.
    S.A. Silling, E. Askari, A meshfree method based on the peridynamic model of solid mechanics. Comput. Struct. 83, 1526–1535 (2005)CrossRefGoogle Scholar
  25. 25.
    S.A. Silling, M. Epton, O. Weckner, J. Xu, E. Askari, Peridynamic states and constitutive modeling. J. Elast. 88 (2), 151–184 (2007) [English]MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    S.J. Schram, H.W. Meyer, Simulating the formation and evolution of behind armor debris fields. ARL-RP 109, U.S. Army Research Laboratory (2005)Google Scholar
  27. 27.
    E. Strassburger, Visualization of impact damage in ceramics using the edge-on impact technique. Int. J. Appl. Ceram. Technol. 1, 1:235–242 (2004)Google Scholar
  28. 28.
    T.J. Vogler, T.F. Thornhill, W.D. Reinhart, L.C. Chhabildas, D.E. Grady, L.T. Wilson, O.A. Hurricane, A. Sunwoo, Fragmentation of materials in expanding tube experiments. Int. J. Impact Eng. 29 (1–10), 735–746 (2003). Hypervelocity ImpactGoogle Scholar
  29. 29.
    X. Zhang, G. Jia, H. Huang, Fragment identification and statistics method of hypervelocity impact SPH simulation. Chin. J. Aeronaut. 24 (1), 18–24 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Patrick Diehl
    • 1
    Email author
  • Michael Bußler
    • 2
  • Dirk Pflüger
    • 3
  • Steffen Frey
    • 2
  • Thomas Ertl
    • 2
  • Filip Sadlo
    • 4
  • Marc Alexander Schweitzer
    • 5
    • 6
  1. 1.Institute for Numerical SimulationBonnGermany
  2. 2.University of Stuttgart Visualisation Research CentreStuttgartGermany
  3. 3.IPVS/SGSStuttgartGermany
  4. 4.Interdisciplinary Center for Scientific ComputingHeidelbergGermany
  5. 5.Institut für Numerische SimulationRheinische Friedrich-Wilhelms-Universität BonnBonnGermany
  6. 6.Fraunhofer Institute for Algorithms and Scientific Computing SCAI Sankt AugustinSankt AugustinGermany

Personalised recommendations