Advertisement

A Trial of Yoking-Proof Protocol in RFID-based Smart-Home Environment

  • Anton Prudanov
  • Sergey Tkachev
  • Nikolay Golos
  • Pavel Masek
  • Jiri Hosek
  • Radek Fujdiak
  • Krystof Zeman
  • Aleksandr Ometov
  • Sergey Bezzateev
  • Natalia Voloshina
  • Sergey AndreevEmail author
  • Jiri Misurec
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 678)

Abstract

Owing to significant progress in the Internet of Things (IoT) within both academia and industry, this breakthrough technology is increasingly penetrating our everyday lives. However, the levels of user adoption and business revenue are still lagging behind the original expectations. The reasons include strong security and privacy concerns behind the IoT, which become critically important in the smart home environment. Our envisioned smart home scenario comprises a variety of sensors, actuators, and end-user devices interacting and sharing data securely. Correspondingly, we aim at investigating and verifying in practice the Yoking-proof protocol, which is a multi-factor authentication solution for smart home systems with an emphasis on data confidentiality and mutual authentication. Our international team conducted a large trial featuring the Yoking-proof protocol, RFID technology, as well as various sensors and user terminals. This paper outlines the essentials of this trial, reports on our practical experience, and summarizes the main lessons learned.

Keywords

Authentication IoT RFID Smart-Home Yoking-proof protocol 

References

  1. 1.
    Atzori, L., Iera, A., Morabito, G.: The Internet of Things: a survey. Comput. Netw. 54(15), 2787–2805 (2010)CrossRefzbMATHGoogle Scholar
  2. 2.
    Cisco, Cisco Visual Networking Index, Global mobile data traffic forecast update, 2015–2020, White paper, 2016Google Scholar
  3. 3.
    Perera, C., Liu, C.H., Jayawardena, S.: The emerging Internet of Things marketplace from an industrial perspective: a survey. IEEE Trans. Emerg. Top. Comput. 3(4), 585–598 (2015)CrossRefGoogle Scholar
  4. 4.
    Vishnevsky, V.M., Larionov, A.: Design concepts of an application platform for traffic law enforcement and vehicles registration comprising RFID technology. In: Proceedings of IEEE International Conference on RFID-Technologies and Applications (RFID-TA), pp. 148–153. IEEE (2012)Google Scholar
  5. 5.
    Vishnevsky, V., Kozyrev, D., Rykov, V.: New generation of safety systems for automobile traffic control using RFID technology and broadband wireless communication. In: Vishnevsky, V., Kozyrev, D., Larionov, A. (eds.) DCCN 2013. CCIS, vol. 279, pp. 145–153. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-05209-0_13 CrossRefGoogle Scholar
  6. 6.
    Miori, V., Russo, D.: Home automation devices belong to the IoT world. ERCIM News 101, 22–23 (2015)Google Scholar
  7. 7.
    Vishnevsky, V.M., Larionov, A., Ivanov, R.: Architecture of application platform for RFID-enabled traffic law enforcement system. In: Proceedings of 7th International Workshop on Communication Technologies for Vehicles (Nets4Cars-Fall), pp. 45–49. IEEE (2014)Google Scholar
  8. 8.
    Komninos, N., Philippou, E., Pitsillides, A.: Survey in smart grid and smart home security: issues, challenges and countermeasures. IEEE Commun. Surv. Tutorials 16(4), 1933–1954 (2014)CrossRefGoogle Scholar
  9. 9.
    Hosek, J., Masek, P., Kovac, D., Ries, M., Kröpfl, F.: IP home gateway as universal multi-purpose enabler for smart home services. e & i Elektrotechnik und Informationstechnik 131(4–5), 123–128 (2014)CrossRefGoogle Scholar
  10. 10.
    He, D., Zeadally, S.: An analysis of RFID authentication schemes for Internet of Things in healthcare environment using elliptic curve cryptography. IEEE Internet Things J. 2(1), 72–83 (2015)CrossRefGoogle Scholar
  11. 11.
    Yu, Y.-C., Hou, T.-W., Chiang, T.-C.: Low cost RFID real lightweight binding proof protocol for medication errors and patient safety. J. Med. Syst. 36(2), 823–828 (2012)CrossRefGoogle Scholar
  12. 12.
    Ning, H., Liu, H., Yang, L.T.: Aggregated-proof based hierarchical authentication scheme for the Internet of Things. IEEE Trans. Parallel Distrib. Syst. 26(3), 657–667 (2015)CrossRefGoogle Scholar
  13. 13.
    Ramsey, B.W., Temple, M.A., Mullins, B.E.: PHY foundation for multi-factor ZigBee node authentication. In: Proceedings of IEEE Global Communications Conference (GLOBECOM), pp. 795–800. IEEE (2012)Google Scholar
  14. 14.
    Juels, A.: ‘Yoking-proofs’ for RFID tags. In: Proceedings of the Second IEEE Annual Conference on Pervasive Computing and Communications Workshops, pp. 138–143. IEEE (2004)Google Scholar
  15. 15.
    Saito, J., Sakurai, K.: Grouping proof for RFID tags. In: Proceedings of 19th International Conference on Advanced Information Networking and Applications (AINA 2005) Volume 1 (AINA papers), vol. 2, pp. 621–624. IEEE (2005)Google Scholar
  16. 16.
    Nuamcherm, T., Kovintavewat, P., Tantibundhit, C., Ketprom, U., Mitrpant, C.: An improved proof for RFID tags. In: Proceedings of 5th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), vol. 2, pp. 737–740. IEEE (2008)Google Scholar
  17. 17.
    Chen, C.-L., Wu, C.-Y.: An RFID system yoking-proof protocol conforming to EPCglobal C1G2 standards. Secur. Commun. Netw. 7(12), 2527–2541 (2014)CrossRefGoogle Scholar
  18. 18.
    Masek, P., Hosek, J., Zeman, K., Stusek, M., Kovac, D., Cika, P., Masek, J., Andreev, S., Kröpfl, F.: Implementation of true IoT vision: survey on enabling protocols and hands-on experience. Int. J. Distrib. Sens. Netw. 2016 (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Anton Prudanov
    • 1
  • Sergey Tkachev
    • 1
  • Nikolay Golos
    • 1
  • Pavel Masek
    • 3
  • Jiri Hosek
    • 3
  • Radek Fujdiak
    • 3
  • Krystof Zeman
    • 3
  • Aleksandr Ometov
    • 2
  • Sergey Bezzateev
    • 1
  • Natalia Voloshina
    • 1
  • Sergey Andreev
    • 2
    Email author
  • Jiri Misurec
    • 3
  1. 1.Saint Petersburg University of Aerospace InstrumentationSt. PetersburgRussia
  2. 2.Tampere University of TechnologyTampereFinland
  3. 3.Brno University of TechnologyBrnoCzech Republic

Personalised recommendations