Sentiment Analysis Based on Psychological and Linguistic Features for Spanish Language

  • María Pilar Salas-ZárateEmail author
  • Mario Andrés Paredes-Valverde
  • Miguel Ángel Rodríguez-García
  • Rafael Valencia-García
  • Giner Alor-Hernández
Part of the Intelligent Systems Reference Library book series (ISRL, volume 120)


Recent research activities in the areas of opinion mining, sentiment analysis and emotion detection from natural language texts are gaining ground under the umbrella of affective computing. Nowadays, there is a huge amount of text data available in the Social Media (e.g. forums, blogs, and social networks) concerning to users’ opinions about experiences buying products and hiring services. Sentiment analysis or opinion mining is the field of study that analyses people’s opinions and mood from written text available on the Web. In this paper, we present extensive experiments to evaluate the effectiveness of the psychological and linguistic features for sentiment classification. To this purpose, we have used four psycholinguistic dimensions obtained from LIWC, and one stylometric dimension obtained from WordSmith, for the subsequent training of the SVM, Naïve Bayes, and J48 algorithms. Also, we create a corpus of tourist reviews from the travel website TripAdvisor. The findings reveal that the stylometric dimension is quite feasible for sentiment classification. Finally, with regard to the classifiers, SVM provides better results than Naïve Bayes and J48 with an F-measure rate of 90.8%.


LIWC Machine learning Natural language processing Opinion mining Sentiment analysis 



This work has been partially supported by the Spanish Ministry of Economy and Competitiveness and the European Commission (FEDER/ERDF) through project KBS4FIA (TIN2016-76323-R). María Pilar Salas-Zárate and Mario Andrés Paredes-Valverde are supported by the National Council of Science and Technology (CONACYT), and the Mexican government.


  1. 1.
    Abdul-Mageed, M., Diab, M., Kübler, S.: SAMAR: Subjectivity and sentiment analysis for Arabic social media. Comput. Speech Lang. 28(1), 20–37 (2014)CrossRefGoogle Scholar
  2. 2.
    Huang, S., Niu, Z., Shi, C.: Automatic construction of domain-specific sentiment lexicon based on constrained label propagation. Knowl.-Based Syst. 56, 191–200 (2014)CrossRefGoogle Scholar
  3. 3.
    Hogenboom, A., Heerschop, B., Frasincar, F., Kaymak, U., de Jong, F.: Multi-lingual support for lexicon-based sentiment analysis guided by semantics. Decis. Support Syst. 62, 43–53 (2014)CrossRefGoogle Scholar
  4. 4.
    Bae, Y., Lee, H.: Sentiment analysis of twitter audiences: measuring the positive or negative influence of popular twitterers. J. Am. Soc. Inf. Sci. Technol. 63(12), 2521–2535 (2012)CrossRefGoogle Scholar
  5. 5.
    Montejo-Ráez, A., Martínez-Cámara, E., Martín-Valdivia, M.T., Ureña-López, L.A.: A knowledge-based approach for polarity classification in Twitter. J. Assoc. Inf. Sci. Technol. 65(2), 414–425 (2014)CrossRefGoogle Scholar
  6. 6.
    Singhal, K., Agrawal, B., Mittal, N.: Modeling Indian general elections: sentiment analysis of political Twitter data. In: Mandal, J.K., Satapathy, S.C., Sanyal, M.K., Sarkar, P.P., Mukhopadhyay A. (eds.) Information Systems Design and Intelligent Applications, pp. 469–477. Springer, India (2015)Google Scholar
  7. 7.
    Duric, A., Song, F.: Feature selection for sentiment analysis based on content and syntax models. Decis. Support Syst. 53(4), 704–711 (2012)CrossRefGoogle Scholar
  8. 8.
    Cruz, N.P., Taboada, M., Mitkov, R.: A machine-learning approach to negation and speculation detection for sentiment analysis. J. Assoc. Inf. Sci. Technol., pp. n/a–n/a (2015)Google Scholar
  9. 9.
    Moraes, R., Valiati, J.F., GaviãoNeto, W.P.: Document-level sentiment classification: an empirical comparison between SVM and ANN. Expert Syst. Appl. 40(2), 621–633 (2013)CrossRefGoogle Scholar
  10. 10.
    Xia, R., Xu, F., Yu, J., Qi, Y., Cambria, E.: Polarity shift detection, elimination and ensemble: a three-stage model for document-level sentiment analysis. Inf. Process. Manag. (2015)Google Scholar
  11. 11.
    Liu, Y., Yu, X., Liu, B., Chen, Z.: Sentence-level sentiment analysis in the presence of modalities. In: Gelbukh, A. (ed.) Computational Linguistics and Intelligent Text Processing, pp. 1–16. Springer, Berlin Heidelberg (2014)CrossRefGoogle Scholar
  12. 12.
    Peñalver-Martinez, I., Garcia-Sanchez, F., Valencia-Garcia, R., Rodríguez-García, M.Á., Moreno, V., Fraga, A., Sánchez-Cervantes, J.L.: Feature-based opinion mining through ontologies. Expert Syst. Appl. 41(13), 5995–6008 (2014)CrossRefGoogle Scholar
  13. 13.
    Esuli, A., Sebastiani, F.: SENTIWORDNET: a publicly available lexical resource for opinion mining. In: Proceedings of the 5th Conference on Language Resources and Evaluation (LREC’06), pp. 417–422 (2006)Google Scholar
  14. 14.
    Valitutti, R.: WordNet-Affect: an affective extension of WordNet. In: Proceedings of the 4th International Conference on Language Resources and Evaluation, pp. 1083–1086 (2004)Google Scholar
  15. 15.
    Cruz, F.L., Troyano, J.A., Pontes, B., Ortega, F.J.: ML-SentiCon: Un lexicón multilingüe de polaridades semánticas a nivel de lemas. Procesamiento del Lenguaje Natural 53, 113–120 (2014)Google Scholar
  16. 16.
    Taboada, M., Brooke, J., Tofiloski, M., Voll, K., Stede, M.: Lexicon-based methods for sentiment analysis. Comput. Linguist. 37(2), 267–307 (2011)CrossRefGoogle Scholar
  17. 17.
    Ghosh, M., Animesh, K.: Unsupervised linguistic approach for sentiment classification from online reviews using SentiWordNet 3.0. Int. J. Eng. Res. Technol. 2(9), (2013)Google Scholar
  18. 18.
    Perez-Rosas, V., Banea, C., Rada, M.: Learning sentiment Lexicons in Spanish. LREC (2012)Google Scholar
  19. 19.
    Clematide, S., Manfred, K.: Evaluation and extension of a polarity lexicon for German. In: Presented at the Proceedings of the First Workshop on Computational Approaches to Subjectivity and Sentiment Analysis, pp. 7–13 (2010)Google Scholar
  20. 20.
    Maks, I., Vossen, P.: Different approaches to automatic polarity annotation at synset level. In: Presented at the Proceedings of the First International Workshop on Lexical Resources, pp. 62–69 (2011)Google Scholar
  21. 21.
    Abdul-Mageed, M., Diab, M.: Toward building a large-scale Arabic sentiment lexicon. In: Presented at the Proceedings of the 6th International Global WordNet Conference, pp. 18–22 (2012) Google Scholar
  22. 22.
    Dehdarbehbahani, I., Shakery, A., Faili, H.: Semi-supervised word polarity identification in resource-lean languages. Neural Netw. 58, 50–59 (2014)CrossRefGoogle Scholar
  23. 23.
    Martín-Valdivia, M.-T., Martínez-Cámara, E., Perea-Ortega, J.-M., Ureña-López, L.A.: Sentiment polarity detection in Spanish reviews combining supervised and unsupervised approaches. Expert Syst. Appl. 40(10), 3934–3942 (2013)CrossRefGoogle Scholar
  24. 24.
    Balahur, A., Turchi, M.: Comparative experiments using supervised learning and machine translation for multilingual sentiment analysis. Comput. Speech Lang. 28(1), 56–75 (2014)CrossRefGoogle Scholar
  25. 25.
    Hsu, R., See, B., Wu, A.: Machine learning for sentiment analysis on the experience project. (2010)Google Scholar
  26. 26.
    Filho, P.P.B., Pardo, T.A., Alusio, S.M.: An evaluation of the brazilianportugueseliwc dictionary for sentiment analysis. In: Presented at the In 9th Brazilian Symposium in Information and Human Language Technology, Fortaleza, Ceara (2013)Google Scholar
  27. 27.
    Gonçalves, P., Araújo, M., Benevenuto, F., Cha, M.: Comparing and combining sentiment analysis methods. In: Proceedings of the First ACM Conference on Online Social Networks, New York, NY, USA, pp. 27–38 (2013)Google Scholar
  28. 28.
    Hutto, C.J., Gilbert, E.: Vader: a parsimonious rule-based model for sentiment analysis of social media text. In: Presented at the Eighth International AAAI Conference on Weblogs and Social Media (2014)Google Scholar
  29. 29.
    del P. Salas-Zárate, M., López-López, E., Valencia-García, R., Aussenac-Gilles, N., Almela, Á., Alor-Hernández, G.: A study on LIWC categories for opinion mining in Spanish reviews. J. Inf. Sci. 40(6), 749–760 (2014)Google Scholar
  30. 30.
    Ye, Q., Zhang, Z., Law, R.: Sentiment classification of online reviews to travel destinations by supervised machine learning approaches. Expert Syst. Appl. 36(3, Part 2), 6527–6535 (2009)Google Scholar
  31. 31.
    Sidorov, G., Miranda-Jiménez, S., Viveros-Jiménez, F., Gelbukh, A., Castro-Sánchez, N., Velásquez, F., Díaz-Rangel, I., Suárez-Guerra, S., Treviño, A., Gordon, J.: Empirical study of machine learning based approach for opinion mining in Tweets. In: Batyrshin, I., Mendoza, M.G. (eds.) Advances in Artificial Intelligence, pp. 1–14. Springer, Berlin Heidelberg (2013)CrossRefGoogle Scholar
  32. 32.
    Pennebaker, J.W., Mayne, T.J., Francis, M.E.: Linguistic predictors of adaptive bereavement. J. Pers. Soc. Psychol. 72(4), 863–871 (1997)CrossRefGoogle Scholar
  33. 33.
    Francis, M.E., Pennebaker, J.W.: LIWC: linguistic inquiry and word count. Southern Methodist University, Dallas (1993)Google Scholar
  34. 34.
    Pennebaker, J.W., Francis, M.E., Booth, R.J.: Linguistic inquiry and word count, vol. 71. Lawrence Erlbaum Associates, Mahway (2001)Google Scholar
  35. 35.
    Ramírez-Esparza, N., Pennebaker, J.W., García, F. A., Suriá Martínez, R.: La psicología del uso de las palabras: un programa de computadora que analiza textos en español. Thepsychology of word use: a computerprogramthatanalyzestexts in Spanish, (2007)Google Scholar
  36. 36.
    Rushdi Saleh, M., Martín-Valdivia, M.T., Montejo-Ráez, A., Ureña-López, L.A.: Experiments with SVM to classify opinions in different domains. Expert Syst. Appl. 38(12), 14799–14804 (2011)Google Scholar
  37. 37.
    Montejo-Ráez, A., Martínez-Cámara, E., Martín-Valdivia, M.T., Ureña-López, L.A.: Ranked WordNet graph for sentiment polarity classification in Twitter. Comput. Speech Lang. 28(1), 93–107 (2014)CrossRefGoogle Scholar
  38. 38.
    Chalothom, T., Ellman, J.: Simple approaches of sentiment analysis via ensemble learning. In: Kim, K.J. (ed.) Information Science and Applications, pp. 631–639. Springer, Berlin Heidelberg (2015)CrossRefGoogle Scholar
  39. 39.
    Bouckaert, R.R., Frank, E., Hall, M.A., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: WEKA—experiences with a Java open-source project. J. Mach. Learn. Res. 11, 2533–2541 (2010)zbMATHGoogle Scholar
  40. 40.
    Bhavsar, H., Ganatra, A.: A comparative study of training algorithms for supervised machine learning. Int. J. Soft Comput. Eng. 2(4), 74–81 (2012)Google Scholar
  41. 41.
    Deng, N., Tian, Y., Zhang, C.: Support vector machines: optimization based theory, algorithms, and extensions. CRC Press, Boca Raton (2012)Google Scholar
  42. 42.
    Baldridge, J.: The opennlp project. openNLP. Available: (2010). Accessed 18 May 2015
  43. 43.
    MacCartney, B.: Stanford classifer. The Stanford Natural Language Processing Group. Available Accessed 18 May 2015
  44. 44.
    Anjaria, M., Guddeti, R.M.R.: Influence factor based opinion mining of Twitter data using supervised learning. In: 2014 Sixth International Conference on Communication Systems and Networks (COMSNETS), pp. 1–8 (2014)Google Scholar
  45. 45.
    Duyen, N.T., Bach, N.X., Phuong, T.M.: An empirical study on sentiment analysis for Vietnamese. In: 2014 International Conference on Advanced Technologies for Communications (ATC), pp. 309–314 (2014)Google Scholar
  46. 46.
    Chinthala, S., Mande, R., Manne, S., Vemuri, S.: Sentiment analysis on Twitter streaming data. In: Satapathy, S.C., Govardhan, A., Raju, K.S., Mandal, J.K. (eds) Emerging ICT for Bridging the Future—Proceedings of the 49th Annual Convention of the Computer Society of India (CSI), vol. 1, pp. 161–168. Springer, Berlin (2015)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • María Pilar Salas-Zárate
    • 1
    Email author
  • Mario Andrés Paredes-Valverde
    • 1
  • Miguel Ángel Rodríguez-García
    • 2
  • Rafael Valencia-García
    • 1
  • Giner Alor-Hernández
    • 3
  1. 1.Departamento de Informática y SistemasUniversidad de MurciaMurciaSpain
  2. 2.Computational Bioscience Research CenterKing Abdullah University of Science and TechnologyThuwalKingdom of Saudi Arabia
  3. 3.Division of Research and Postgraduate StudiesInstituto Tecnológico de OrizabaOrizaba VeracruzMexico

Personalised recommendations