Advertisement

Exploring Large Movie Collections: Comparing Visual Berrypicking and Traditional Browsing

  • Thomas Low
  • Christian Hentschel
  • Sebastian Stober
  • Harald Sack
  • Andreas Nürnberger
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10133)

Abstract

We compare Visual Berrypicking, an interactive approach allowing users to explore large and highly faceted information spaces using similarity-based two-dimensional maps, with traditional browsing techniques. For large datasets, current projection methods used to generate maplike overviews suffer from increased computational costs and a loss of accuracy resulting in inconsistent visualizations. We propose to interactively align inexpensive small maps, showing local neighborhoods only, which ideally creates the impression of panning a large map. For evaluation, we designed a web-based prototype for movie exploration and compared it to the web interface of The Movie Database (TMDb) in an online user study. Results suggest that users are able to effectively explore large movie collections by hopping from one neighborhood to the next. Additionally, due to the projection of movie similarities, interesting links between movies can be found more easily, and thus, compared to browsing serendipitous discoveries are more likely.

Keywords

Exploratory interfaces Media retrieval Multidimensional scaling User study 

References

  1. 1.
    Barthel, K.U., Hezel, N., Mackowiak, R.: Graph-based browsing for large video collections. In: He, X., Luo, S., Tao, D., Xu, C., Yang, J., Hasan, M.A. (eds.) MMM 2015. LNCS, vol. 8936, pp. 237–242. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-14442-9_21 Google Scholar
  2. 2.
    Bates, M.J.: The design of browsing and berrypicking techniques for the online search interface. Online Inf. Rev. 13(5), 407–424 (1989)CrossRefGoogle Scholar
  3. 3.
    Gionis, A., Indyk, P., Motwani, R., et al.: Similarity search in high dimensions via hashing. In: VLDB, vol. 99, pp. 518–529 (1999)Google Scholar
  4. 4.
    Gower, J.: Generalized procrustes analysis. Psychometrika 40(1), 33–51 (1975)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Gretarsson, B., O’donovan, J., Bostandjiev, S., Höllerer, T., Asuncion, A., Newman, D., Smyth, P.: Topicnets: visual analysis of large text corpora with topic modeling. ACM Trans. Intell. Syst. Technol. (TIST) 3(2), 23 (2012)Google Scholar
  6. 6.
    Hentschel, C., Hercher, J., Knuth, M., Osterhoff, J., Quehl, B., Sack, H., Steinmetz, N., Waitelonis, J., Yang, H.: Open up cultural heritage in video archives with mediaglobe. In: Proceedings of the 12th International Conference on Innovative Internet Community Services, I2CS (2012)Google Scholar
  7. 7.
    Kleiman, Y., Lanir, J., Danon, D., Felberbaum, Y., Cohen-Or, D.: Dynamicmaps: similarity-based browsing through a massive set of images. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, CHI 2015 pp. 995–1004. ACM (2015)Google Scholar
  8. 8.
    Kohonen, T., Kaski, S., Lagus, K., Salojarvi, J., Honkela, J., Paatero, V., Saarela, A.: Self organization of a massive document collection. IEEE Trans. Neural Netw. 11(3), 574–585 (2000)CrossRefGoogle Scholar
  9. 9.
    Kruskal, J.: Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29, 1–27 (1964)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Lee, H., Kihm, J., Choo, J., Stasko, J., Park, H.: iVisClustering: an interactive visual document clustering via topic modeling. Comput. Graph. Forum 31, 1155–1164 (2012). Wiley Online LibraryCrossRefGoogle Scholar
  11. 11.
    Low, T., Hentschel, C., Stober, S., Sack, H., Nürnberger, A.: Visual berrypicking in large image collections. In: Proceedings of the 8th Nordic Conference on HCI, NordiCHI 2014, pp. 1043–1046. ACM (2014)Google Scholar
  12. 12.
    Rodden, K., Basalaj, W., Sinclair, D., Wood, K.: Does organisation by similarity assist image browsing? In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2001, pp. 190–197. ACM (2001)Google Scholar
  13. 13.
    Rubner, Y., Guibas, L., Tomasi, C.: The earth mover’s distance, multi-dimensional scaling, and color-based image retrieval. In: Proceedings of the ARPA Image Understanding Workshop, pp. 661–668 (1997)Google Scholar
  14. 14.
    Stober, S., Low, T., Gossen, T., Nürnberger, A.: Incremental visualization of growing music collections. In: 14th International Conference on Music Information Retrieval, ISMIR 2013, pp. 433–438 (2013)Google Scholar
  15. 15.
    Strong, G., Hoeber, O., Gong, M.: Visual image browsing and exploration (vibe): user evaluations of image search tasks. In: An, A., Lingras, P., Petty, S., Huang, R. (eds.) AMT 2010. LNCS, vol. 6335, pp. 424–435. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-15470-6_44 CrossRefGoogle Scholar
  16. 16.
    Venna, J., Kaski, S.: Local multidimensional scaling. Neural Netw. 19, 889–899 (2006)CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Thomas Low
    • 1
  • Christian Hentschel
    • 2
  • Sebastian Stober
    • 3
  • Harald Sack
    • 4
  • Andreas Nürnberger
    • 1
  1. 1.Otto von Guericke University MagdeburgMagdeburgGermany
  2. 2.Hasso Plattner Institute for Software Systems EngineeringPotsdamGermany
  3. 3.University of PotsdamPotsdamGermany
  4. 4.FIZ KarlsruheKarlsruheGermany

Personalised recommendations