Supervised Class Graph Preserving Hashing for Image Retrieval and Classification

  • Lu Feng
  • Xin-Shun XuEmail author
  • Shanqing GuoEmail author
  • Xiao-Lin Wang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10132)


With the explosive growth of data, hashing-based techniques have attracted significant attention due to their efficient retrieval and storage reduction ability. However, most hashing methods do not have the ability of predicting the labels directly. In this paper, we propose a novel supervised hashing approach, namely Class Graph Preserving Hashing (CGPH), which can well incorporate label information into hashing codes and classify the samples with binary codes directly. Specifically, CGPH learns hashing functions by ensuring label consistency and preserving class graph similarity among hashing codes simultaneously. Then, it learns effective binary codes through orthogonal transformation by minimizing the quantization error between hashing function and binary codes. In addition, an iterative method is proposed for the optimization problem in CGPH. Extensive experiments on two large scale real-world image data sets show that CGPH outperforms or is comparable to state-of-the-art hashing methods in both image retrieval and classification tasks.


Hashing Image retrieval Image classification Similarity search 



This work was partially supported by National Natural Science Foundation of China (61173068, 61573212, 91546203), Program for New Century Excellent Talents in University of the Ministry of Education, Independent Innovation Foundation of Shandong Province (2014CGZH1106), Key Research and Development Program of Shandong Province (2016GGX101044, 2015GGE27033).


  1. 1.
    Belkin, M., Niyogi, P., Sindhwani, V.: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J. Mach. Learn. Res. 7, 2399–2434 (2006)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing scheme based on p-stable distributions. In: Proceedings of SCG, pp. 253–262 (2004)Google Scholar
  3. 3.
    Fan, R., Chang, K., Hsieh, C., Wang, X., Lin, C.: LIBLINEAR: a library for large linear classification. J. Mach. Learn. Res. 9, 1871–1874 (2008)zbMATHGoogle Scholar
  4. 4.
    Fung, G., Mangasarian, O.L.: Multicategory proximal support vector machine classifiers. Mach. Learn. 59(1–2), 77–97 (2005)CrossRefzbMATHGoogle Scholar
  5. 5.
    Gong, Y., Lazebnik, S.: Iterative quantization: a procrustean approach to learning binary codes. In: Proceedings of CVPR, pp. 817–824 (2011)Google Scholar
  6. 6.
    He, K., Wen, F., Sun, J.: K-means hashing: an affinity-preserving quantization method for learning binary compact codes. In: Proceedings of CVPR, pp. 2938–2945 (2013)Google Scholar
  7. 7.
    Huiskes, M.J., Lew, M.S.: The MIR flickr retrieval evaluation. In: Proceedings of MIR, pp. 39–43 (2008)Google Scholar
  8. 8.
    Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the curse of dimensionality. In: Proceedings of STOC, pp. 604–613 (1998)Google Scholar
  9. 9.
    Kong, W., Li, W.: Isotropic hashing. In: Proceedings of NIPS, pp. 1655–1663 (2012)Google Scholar
  10. 10.
    Kulis, B., Darrell, T.: Learning to hash with binary reconstructive embeddings. In: Proceedings of NIPS, pp. 1042–1050 (2009)Google Scholar
  11. 11.
    Kulis, B., Grauman, K.: Kernelized locality-sensitive hashing for scalable image search. In: Proceedings of ICCV, pp. 2130–2137 (2009)Google Scholar
  12. 12.
    Kulis, B., Jain, P., Grauman, K.: Fast similarity search for learned metrics. IEEE Trans. Pattern Anal. Mach. Intell. 31(12), 2143–2157 (2009)CrossRefGoogle Scholar
  13. 13.
    Li, Y., Wang, R., Liu, H., Jiang, H., Shan, S., Chen, X.: Two birds, one stone: jointly learning binary code for large-scale face image retrieval and attributes prediction. In: Proceedings of ICCV, pp. 3819–3827 (2015)Google Scholar
  14. 14.
    Liu, W., He, J., Chang, S.: Large graph construction for scalable semi-supervised learning. In: Proceedings of ICML, pp. 679–686 (2010)Google Scholar
  15. 15.
    Liu, W., Wang, J., Ji, R., Jiang, Y., Chang, S.: Supervised hashing with kernels. In: Proceedings of CVPR, pp. 2074–2081 (2012)Google Scholar
  16. 16.
    Liu, W., Wang, J., Kumar, S., Chang, S.: Hashing with graphs. In: Proceedings of ICML, pp. 1–8 (2011)Google Scholar
  17. 17.
    Norouzi, M., Fleet, D.J.: Minimal loss hashing for compact binary codes. In: Proceedings of ICML, pp. 353–360 (2011)Google Scholar
  18. 18.
    Raginsky, M., Lazebnik, S.: Locality-sensitive binary codes from shift-invariant kernels. In: Proceedings of NIPS, pp. 1509–1517 (2009)Google Scholar
  19. 19.
    Schnemann, P.: A generalized solution of the orthogonal procrustes problem. Psychometrika 31(1), 1–10 (1966)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Shen, F., Shen, C., Liu, W., Shen, H.T.: Supervised discrete hashing. In: Proceedings of CVPR, pp. 37–45 (2015)Google Scholar
  21. 21.
    Strecha, C., Bronstein, A.M., Bronstein, M.M., Fua, P.: LDAHash: improved matching with smaller descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 34(1), 66–78 (2012)CrossRefGoogle Scholar
  22. 22.
    Tang, J., Li, Z., Wang, M., Zhao, R.: Neighborhood discriminant hashing for large-scale image retrieval. IEEE Trans. Image Process. 24(9), 2827–2840 (2015)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Torralba, A., Fergus, R., Freeman, W.T.: 80 million tiny images: a large data set for nonparametric object and scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 30(11), 1958–1970 (2008)CrossRefGoogle Scholar
  24. 24.
    Wang, J., Xu, X.-S., Guo, S., Cui, L., Wang, X.: Linear unsupervised hashing for ANN search in Euclidean space. Neurocomputing 171, 283–292 (2016)CrossRefGoogle Scholar
  25. 25.
    Wang, J., Kumar, S., Chang, S.: Sequential projection learning for hashing with compact codes. In: Proceedings of ICML, pp. 1127–1134 (2010)Google Scholar
  26. 26.
    Wang, J., Kumar, S., Chang, S.: Semi-supervised hashing for large-scale search. IEEE Trans. Pattern Anal. Mach. Intell. 34(12), 2393–2406 (2012)CrossRefGoogle Scholar
  27. 27.
    Wang, S.-S., Huang, Z., Xu, X.-S.: A multi-label least-squares hashing for scalable image search. In: Proceedings of SDM, pp. 954–962 (2015)Google Scholar
  28. 28.
    Weiss, Y., Torralba, A., Fergus, R.: Spectral hashing. In: Proceedings of NIPS, pp. 1753–1760 (2008)Google Scholar
  29. 29.
    Xu, X.-S.: Dictionary learning based hashing for cross-modal retrieval. In: Proceedings of MM, pp. 177–181 (2016)Google Scholar
  30. 30.
    Yan, T.-K., Xu, X.-S., Guo, S., Huang, Z., Wang, X.-L.: Supervised robust discrete multimodal hashing for cross-media retrieval. In: Proceedings of CIKM, pp. 1271–1280 (2016)Google Scholar
  31. 31.
    Yang, Y., Shen, F., Shen, H.T., Li, H., Li, X.: Robust discrete spectral hashing for large-scale image semantic indexing. IEEE Trans. Big Data 1(4), 162–171 (2015)CrossRefGoogle Scholar
  32. 32.
    Yang, Y., Zha, Z.-J., Gao, Y., Zhu, X., Chua, T.-S.: Exploiting web images for robust semantic video indexing via sample-specific loss. IEEE Trans. Multimedia 16(6), 1677–1689 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Computer Science and TechnologyShandong UniversityJinanChina

Personalised recommendations