Curtailing Renewable Feed-In Peaks and Its Impact on Power Grid Extensions in Germany for the Year 2030

A Load Ow Model Using an Enhanced Benders Decomposition Approach
  • David GunkelEmail author
  • Dominik Möst
Conference paper
Part of the Trends in Mathematics book series (TM)


Transmission grid extension is a central aspect of the future energy system transition. This is due to the diverging occurrence of renewable energy feed-in and consumption. The existing layout of the German grid was not designed to accommodate this divergence. To analyze the most cost-effective grid extensions, efficient methods for techno-economic analysis are required. The challenge of conducting an analysis of grid extensions involves the lumpy investment decisions and the non-linear character of several restrictions in a real-data environment. The addition of new lines makes the grid characteristic variable for approximately load flow calculations. The following paper presents an application of the Benders Decomposition, dividing the problem into an extension and a dispatch problem combined with a Karush–Kuhn–Tucker-system. This combination enables one to solve the problem within reasonable time by using the favorable conditions contained in the sub-problem. The method is applied to the analysis of the integration of renewable energy within the context of German transmission grid extension planning for the year 2030. It can be shown that curtailing feed-in peaks of renewables can significantly reduce the extent of grid extensions necessary to sustain the energy system in Germany.


Transmission grid extensions Germany Integration of renewable energy sources 


  1. 1.
    50Hertz Transmission GmbH; Amprion GmbH; TenneT TSO GmbH; TransnetBW GmbH (2015) Netzentwicklungsplan 2015. Tech. Rep. April 2014, Berlin; Dortmund; Bayreuth; StuttgartGoogle Scholar
  2. 2.
    Binato S, Pereira M, Granville S (2001) A new Benders decomposition approach to solve power transmission network design problems. IEEE Transactions on Power Systems 16(2):235–240CrossRefGoogle Scholar
  3. 3.
    Bundesnetzagentur (2014) Kraftwerksliste Bundesnetzagentur zum erwarteten Zu- und Rückbau 2014 bis 2018.Google Scholar
  4. 4.
    Conejo AJ, Castillo E, Minguez R, Garcia-Bertrand R (2006) Decomposition Techniques in Mathematical Programming: Engineering and Science Applications. SpringerGoogle Scholar
  5. 5.
    Egerer J, Schill WP (2014) Power System Transformation toward Renewables: Investment Scenarios for Germany. Economics of Energy & Environmental Policy 3(2):29–43CrossRefGoogle Scholar
  6. 6.
    Energy System Analysis Agency (ESA2) (2013) Shaping our energy system - combining European modelling expertise. Tech. rep., Energy System Analysis Agency (ESA2), BrusselsGoogle Scholar
  7. 7.
    ENTSO-E (2013) Data. URL
  8. 8.
    Geoffrion AM (1972) Generalized Benders Decomposition 1. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS 10(4):238–260MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Gunkel D, Möst D (2015) Netzausbau unter Beachtung von dezentralen Speichersystemen in Deutschland im Jahr 2030. In: 9. Internationale Energiewirtschaftstagung an der TU Wien I, WienGoogle Scholar
  10. 10.
    Hemmati R, Hooshmand RA, Khodabakhshian A (2013) State-of-the-art of transmission expansion planning: Comprehensive review. Renewable and Sustainable Energy Reviews 23:312–319CrossRefGoogle Scholar
  11. 11.
    Hinz F, Möst D (2014) Opportunity cost of reactive power provision - Development and back-testing of a techno-economic AC load flow model. In: 14th IAEE European Conference, Rome, pp 1–15Google Scholar
  12. 12.
    Klinge Jacobsen H, Schröder ST (2012) Curtailment of renewable generation: Economic optimality and incentives. Energy Policy 49:663–675CrossRefGoogle Scholar
  13. 13.
    Klobasa M, Erge T, Wille-Haussmann B (2009) Integration von Windenergie in ein zukünftiges Energie- system unterstützt durch Lastmanagement. Tech. rep., Fraunhofer-Institut für System- und Innovationsforschung ISI; Fraunhofer-Institut für Solare Energiesysteme ISE, Karlsruhe; FreiburgGoogle Scholar
  14. 14.
    Kost C, Schlegl T, Thomsen J, Nold S, Mayer J (2013) Studie Stromgestehungskosten Erneuerbare Energien. Tech. rep., Fraunhofer-Institutfür Solare Energiesysteme ISE, FreiburgGoogle Scholar
  15. 15.
    Leuthold FU, Weigt H, Hirschhausen C (2010) A Large-Scale Spatial Optimization Model of the European Electricity Market. Networks and Spatial Economics 12(1):75–107MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Müller, T, Gunkel, D, Möst D (2013) How Does Renewable Curtailment Influence the Need of Transmission and Storage Capacities in Europe? In: 13th European IAEE Conference, DüsseldorfGoogle Scholar
  17. 17.
    Oswald BR, Hofmann L (2010) Wirtschaftlichkeitsvergleich unterschiedlicher Übertragungstechniken im Höchstspannungsnetz anhand der 380-kV-Leitung Wahle-Mecklar. Tech. rep., Leibniz Universität Hannover, HannoverGoogle Scholar
  18. 18.
    Overbye TJ, Cheng X, Sun Y (2004) A comparison of the AC and DC power flow models for LMP calculations. Proceedings of the Hawaii International Conference on System Sciences 37(C):725–734, 10.1109/HICSS.2004.1265164Google Scholar
  19. 19.
    Schlesinger M, Hofer P, Kemmler DA, Kirchner DA, Koziel S, Ley A, Lindenberger D, Knaut A, Malischek R, Nick S, Panke T, Paulus S, Tode C, Wagner J, Piégsa DA, Seefeldt F, Straß burg S, Weinert K, Lutz C, Lehr U, Ulrich P (2014) Entwicklung der Energiemärkte - Energiereferenzprognose. Tech. Rep. 57, Prognos AG; EWI - Energiewirtschaftliches Institut an der Universität zu Köln; GWS - Gesellschaft für wirtschaftliche Strukturforschung, Basel; Köln; OsnabrückGoogle Scholar
  20. 20.
    Schweppe FC, Tabors RD, Caraminis MC, Bohn RE (1988) Spot pricing of electricityGoogle Scholar
  21. 21.
    Stigler H, Todem C (2005) Optimization of the Austrian Electricity Sector (Control Zone of VERBUND APG) by Nodal Pricing. Central European Journal of Operations Research 13:105–125zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Chair of Energy EconomicsTU DresdenDresdenGermany

Personalised recommendations