Advertisement

Optimal Storage Operation with Model Predictive Control in the German Transmission Grid

  • Nico Meyer-Hübner
  • Michael Suriyah
  • Thomas Leibfried
  • Viktor Slednev
  • Valentin Bertsch
  • Wolf Fichtner
  • Philipp Gerstner
  • Michael Schick
  • Vincent Heuveline
Conference paper
Part of the Trends in Mathematics book series (TM)

Abstract

In this paper, a model predictive control approach is presented to optimize generator and storage operation in the German transmission grid over time spans of hours to several days. In each optimization, a full AC model with typical OPF constraints such as voltage or line capacity limits is used. With given RES and load profiles, inter-temporal constraints such as generator ramping and storage energy are included. Jacobian and Hessian matrices are provided to the solver to enable a fast problem formulation, but the computational bottleneck still lies in solving the linear Newton step. The deviation in storage operation when comparing the solution over the entire horizon of 96 h against the model predictive control is shown in the German transmission grid. The results show that horizons of around 24 h are sufficient with today’s storage capacity, but must be extended when increasing the latter.

Keywords

Time constrained optimal power flow OPF Storage Model predictive control Receding horizon Transmission grid 

Notes

Acknowledgements

The authors kindly acknowledge the support for this work from the German Research Foundation (DFG) under the Project Number LE1432/14-1.

References

  1. 1.
    Carpentier J (1962) Contribution a l’etude du dispatching economique. Bull Soc Francaise des Electriciens 3:431–447Google Scholar
  2. 2.
    Duff IS (2004) Ma57—a code for the solution of sparse symmetric definite and indefinite systems. ACM Trans Math Softw 30(2):118–144MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Gill S, Kockar I, Ault G (2014) Dynamic optimal power flow for active distribution networks. IEEE Transactions on Power Systems 29(1):121–131CrossRefGoogle Scholar
  4. 4.
    Glavic M, Hajian M, Rosehart W, Van Cutsem T (2011) Receding-horizon multi-step optimization to correct nonviable or unstable transmission voltages. Power Systems, IEEE Transactions on 26(3):1641–1650CrossRefGoogle Scholar
  5. 5.
    Kuhn HW, Tucker AW (1951) Nonlinear programming. In: Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, Berkeley, Calif., pp 481–492Google Scholar
  6. 6.
    Meyer-Huebner N, Suriyah M, Leibfried T (2015a) On efficient computation of time constrained optimal power flow in rectangular form. In: IEEE PowerTech conference, EindhovenGoogle Scholar
  7. 7.
    Meyer-Huebner N, Suriyah M, Leibfried T, Slednev V, Bertsch V, Fichtner W, Gerstner P, Schick M, Heuveline V (2015b) Time constrained optimal power flow calculations in the german transmission grid. In: International ETG Congress, BonnGoogle Scholar
  8. 8.
    Olivares D, Lara J, Canizares C, Kazerani M (2015) Stochastic-predictive energy management system for isolated microgrids. Smart Grid, IEEE Transactions on 6(6):2681–2693CrossRefGoogle Scholar
  9. 9.
    Qin Z, Yang Y (2008) Vectorization implementation of optimal power flow in rectangular form based on interior point method. In: IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century, pp 1–8Google Scholar
  10. 10.
    Qin Z, Hou Y, Lu E, Luo C, Cheng S (2014) Solving long time-horizon dynamic optimal power flow of large-scale power grids with direct solution method. IET Generation, Transmission Distribution 8(5):895–906CrossRefGoogle Scholar
  11. 11.
    Rawlings J (2000) Tutorial overview of model predictive control. Control Systems, IEEE 20(3):38–52CrossRefGoogle Scholar
  12. 12.
    Wang H, Murillo-Sanchez C, Zimmerman R, Thomas R (2007) On computational issues of market-based optimal power flow. IEEE Transactions on Power Systems 22(3):1185–1193CrossRefGoogle Scholar
  13. 13.
    Xie K, Song Y (2001) Dynamic optimal power flow by interior point methods. IEE Proceedings- Generation, Transmission and Distribution 148(1):76–84CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Nico Meyer-Hübner
    • 1
  • Michael Suriyah
    • 1
  • Thomas Leibfried
    • 1
  • Viktor Slednev
    • 2
  • Valentin Bertsch
    • 2
  • Wolf Fichtner
    • 2
  • Philipp Gerstner
    • 3
    • 4
  • Michael Schick
    • 3
    • 4
  • Vincent Heuveline
    • 3
    • 4
  1. 1.Institute of Electric Energy Systems and High-Voltage TechnologyKarlsruhe Institute of TechnologyKarlsruheGermany
  2. 2.Institute for Industrial ProductionKarlsruhe Institute of TechnologyKarlsruheGermany
  3. 3.Engineering Mathematics and Computing LabHeidelberg UniversityHeidelbergGermany
  4. 4.Heidelberg Institute for Theoretical StudiesHeidelbergGermany

Personalised recommendations