Automated Verification of Switched Systems Using Hybrid Identification

  • Stefan SchwabEmail author
  • Bernd Holzmüller
  • Sören Hohmann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10107)


Verification of switched systems has to include the continuous trajectories as well as the discrete states of the system. For strongly interconnected systems with mutual dependencies it is not sufficient to verify the two system parts individually. It is necessary to examine the combined behaviour in such a setting. The approach presented in this paper is based on the well known concept of using system identification methods for verification which is extended to switched systems. The authors introduce the idea to tackle the verification of complex mechatronical systems as hybrid identification problem. Therefore the specification is given by the user in terms of the parameters of linear dynamic systems and a superimposed state machine. The implemented system under test can be transformed into the same representation using input/output measurement data and a recently developed hybrid identification procedure. Finally it is possible to compare the two representations automatically and calculate a formal statement about the consistency between specification and implementation.


Test automation Hybrid identification Switched systems 


  1. 1.
    Transregional collaborative research center “automatic verification and analysis of complex systems (avacs)”.
  2. 2.
    Abel, A., Reineke, J.: Memin: sat-based exact minimization of incompletely specified mealy machines. In: Proceedings of the IEEE/ACM International Conference on Computer-Aided Design, ICCAD 2015, Austin, TX, USA, 2–6 November 2015, pp. 94–101 (2015)Google Scholar
  3. 3.
    Alur, R., Dang, T., Ivančić, F.: Reachability analysis of hybrid systems via predicate abstraction. In: Tomlin, C.J., Greenstreet, M.R. (eds.) HSCC 2002. LNCS, vol. 2289, pp. 35–48. Springer, Heidelberg (2002). doi: 10.1007/3-540-45873-5_6 CrossRefGoogle Scholar
  4. 4.
    Alur, R., Dang, T., Ivančić, F.: Predicate abstraction for reachability analysis of hybrid systems. ACM Trans. Embed. Comput. Syst. 5(1), 152–199 (2006)CrossRefzbMATHGoogle Scholar
  5. 5.
    Anta, A., Majumdar, R., Saha, I., Tabuada, P.: Automatic verification of control system implementations. In: Proceedings of the Tenth ACM International Conference on Embedded Software, pp. 9–18 (2010)Google Scholar
  6. 6.
    Araiza-Illan, D., Eder, K., Richards, A.: Verification of control systems implemented in simulink with assertion checks and theorem proving: a case study. In: 2015 European Control Conference (ECC), pp. 2670–2675, July 2015Google Scholar
  7. 7.
    Badban, B., Fränzle, M., Peleska, J., Teige, T.: Test automation for hybrid systems. In: Proceedings of the 3rd International Workshop on Software Quality Assurance, SOQUA 2006, pp. 14–21. ACM, New York (2006)Google Scholar
  8. 8.
    Balluchi, A., Benvenuti, L., di Benedetto, M.D., Pinello, C., Sangiovanni-Vincentelli, A.L.: Automotive engine control and hybrid systems: challenges and opportunities. Proc. IEEE 88(7), 888–912 (2000)CrossRefGoogle Scholar
  9. 9.
    Bhatia, A., Frazzoli, E.: Incremental search methods for reachability analysis of continuous and hybrid systems. In: Alur, R., Pappas, G. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 142–156. Springer, Berlin Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Broy, M., Jonsson, B., Katoen, J.-P., Leucker, M., Pretschner, A. (eds.): Model-Based Testing of Reactive Systems: Advanced Lectures. LNCS, vol. 3472. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  11. 11.
    Chen, W., Chen, W.-T., Saif, M., Li, M.-F., Wu, H.: Simultaneous fault isolation and estimation of lithium-ion batteries via synthesized design of luenberger and learning observers. IEEE Trans. Control Syst. Technol. 22(1), 290–298 (2014)CrossRefGoogle Scholar
  12. 12.
    Dang, T.: Model-based testing of hybrid systems. In: Model-Based Testing for Embedded Systems, chap. 14, pp. 383–424Google Scholar
  13. 13.
    Denise, A., Gaudel, M.-C., Gouraud, S.-D.: A generic method for statistical testing. In: 15th International Symposium on Software Reliability Engineering, ISSRE 2004, pp. 25–34 (2004)Google Scholar
  14. 14.
    Diehm, G., Maier, S., Flad, M., Hohmann, S.: An identification method for individual driver steering behaviour modelled by switched affine systems. In: Proceedings of the 52nd IEEE Conference on Decision and Control, pp. 3547–3553 (2013)Google Scholar
  15. 15.
    Diehm, G., Maier, S., Flad, M., Hohmann, S.: Online identification of individual driver steering behaviour and experimental results. In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, pp. 221–227 (2013)Google Scholar
  16. 16.
    Föllinger, O., Konigorski, U.: Regelungstechnik: Einführung die Methoden und ihre Anwendung, 11, völlig neu bearb. aufl. edn. VDE-Verl., Berlin (2013)Google Scholar
  17. 17.
    Frank, P.M.: Diagnoseverfahren in der Automatisierungstechnik. at - Automatisierungstechnik, 47–64 (1994)Google Scholar
  18. 18.
    Holling, D., Pretschner, A., Gemmar, M.: 8cage: lightweight fault-based test generation for simulink. In: Proceedings of the 29th ACM/IEEE International Conference on Automated Software Engineering, ASE 2014, pages 859–862. ACM, New York (2014)Google Scholar
  19. 19.
    Kaner, C.: An introduction to scenario testing (2003)Google Scholar
  20. 20.
    Lin, L., Poore, J.H., Eschbach, R., Hierons, R.M., Robinson-Mallett, C.: Augmenting sequence enumeration with string-rewriting for requirements analysis and behavioral specification. In: Cortellessa, V., Varró, D. (eds.) FASE 2013. LNCS, vol. 7793, pp. 179–193. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-37057-1_13 CrossRefGoogle Scholar
  21. 21.
    Liu, D., Guo, X., Tang, G., Huang, Z.: Model Validation via System Identification and Hypothesis Test. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  22. 22.
    Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT-2004. LNCS, vol. 3253, pp. 152–166. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-30206-3_12 CrossRefGoogle Scholar
  23. 23.
    Matinnejad, R., Nejati, S., Briand, L., Bruckmann, T., Poull, C.: Proceedings of the 5th International Symposium on Search based software engineering, SSBSE 2013, St. Petersburg, Russia, 24–26 August 2013, pp. 141–157 (2013)Google Scholar
  24. 24.
    Matinnejad, R., Nejati, S., Briand, L., Bruckmann, T., Poull, C.: Search-based automated testing of continuous controllers: framework, tool support, and case studies. Inf. Softw. Technol. 57, 705–722 (2015)CrossRefGoogle Scholar
  25. 25.
    Matinnejad, R., Nejati, S., Briand, L.C., Bruckmann, T.: Automated test suite generation for time-continuous simulink models, pp. 595–606 (2016)Google Scholar
  26. 26.
    Pajic, M., Park, J., Lee, I., Pappas, G.J., Sokolsky, O.: Automatic verification of linear controller software. In: Proceedings of the 12th International Conference on Embedded Software, EMSOFT 2015, pp. 217–226. IEEE Press, Piscataway (2015)Google Scholar
  27. 27.
    Schneider, J.: Tracking down root causes of defects in simulink models. In: Proceedings of the 29th ACM/IEEE International Conference on Automated Software Engineering, ASE 2014, pp. 599–604. ACM, New York (2014)Google Scholar
  28. 28.
    Schupp, S., Ábrahám, E., Chen, X., Makhlouf, I., Frehse, G., Sankaranarayanan, S., Kowalewski, S.: Current challenges in the verification of hybrid systems. In: Berger, C., Mousavi, M.R. (eds.) CyPhy 2015. LNCS, vol. 9361, pp. 8–24. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-25141-7_2 CrossRefGoogle Scholar
  29. 29.
    Simon, S.: Objektorientierte Methoden zum automatisierten Entwurf von modell-basierten Diagnosesystemen. PhD thesis, Berlin, 2015. Zugl.: Kaiserslautern, Techn. Univ., Diss. (2015)Google Scholar
  30. 30.
    Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model-based testing (2006)Google Scholar
  31. 31.
    Yordanov, B., Belta, C.: Formal analysis of discrete-time piecewise affine systems. IEEE Trans. Autom. Control 55(12), 2834–2840 (2010)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Zander-Nowicka, J.: Model-based testing of real-time embedded systems in the automotive domain (2009)Google Scholar
  33. 33.
    Zhao, F., Koutsoukos, X., Haussecker, H., Reich, J., Cheung, P.: Monitoring and fault diagnosis of hybrid systems. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 35(6), 1225–1240 (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Stefan Schwab
    • 1
    Email author
  • Bernd Holzmüller
    • 2
  • Sören Hohmann
    • 1
  1. 1.Institute of Control SystemsKarlsruhe Institute of TechnologyKarlsruheGermany
  2. 2.ITK-EngineeringStuttgartGermany

Personalised recommendations