Metabolic Engineering of Escherichia coli for Lactic Acid Production from Renewable Resources

  • Alfredo Martinez
  • María E. Rodríguez-Alegría
  • Maria Conceição Fernandes
  • Guillermo Gosset
  • Alejandra Vargas-Tah


Metabolic engineering has been used to develop Escherichia coli strains that generate d or l-lactic acid as the predominant fermentation product from different carbon sources, including glucose and xylose, which are present in syrups from lignocellulosic hydrolysates. As an introduction, this review presents the relevance that lactic acid has nowadays in several industrial and commercial applications. It also stresses the relevance of producing d or l-lactic acid as pure optical enantiomers for different applications. The second part reviews the metabolic engineering and adaptive evolution efforts developed with E. coli to achieve the production of optically pure d or l-lactic acid using several carbon sources. Furthermore, a set of results using actual mixtures of sugars contained in lignocellulosic hydrolysates is presented and discussed. Even though the efficient conversion of sugars to d or l-lactic acid and high volumetric productivities has been achieved, this review reveals that most work needs to be performed with actual lignocellulosic hydrolysates at the pilot or demonstrative scales to deploy the full potential of this efforts towards industrial production.


Lactic acid Escherichia coli Metabolic engineering Glucose Xylose Glycerol Lignocellulosic Hydrolysates 



This work was supported by the Mexican National Council for Science and Technology (CONACYT-Mexico), FONCICYT ERANet-LAC Grant C0013-248192.


  1. Aeschelmann F, Carus M (2015) Bio-based building blocks and polymers in the world—capacities, production and applications: status quo and trends toward 2020-short version. Accessed 15 July 2016
  2. Avci A, Saha BC, Kennedy GJ et al (2013) Dilute sulfuric acid pretreatment of corn stover for enzymatic hydrolysis and efficient ethanol production by recombinant Escherichia coli FBR5 without detoxification. Bioresour Technol 142:312–319. doi: 10.1016/j.biortech.2013.05.002 CrossRefPubMedGoogle Scholar
  3. Carus M, Carrez D, Kaeb H, Ravenstijn et al (2011) Level playing field for bio-based chemistry and materials. Accessed 19 July 2016
  4. CEN (2011) Final report of CEN/BT/WG 209 “Bio-based products”. Avaliable via BioBased Economy. Accessed 26 July 2016Google Scholar
  5. Chang D, Jung H, Rhee J (1999) Homofermentative production of d- or l-lactate in metabolically engineered Escherichia coli RR1. Appl Environ Microb 65:1384–1389Google Scholar
  6. Chen X, Zhou L, Tian K, Kumar A et al (2013) Metabolic engineering of Escherichia coli: a sustainable industrial platform for bio-based chemical production. Biotechnol Adv 31:1200–1223. doi: 10.1016/j.biotechadv.2013.02.009 CrossRefPubMedGoogle Scholar
  7. Clark DP (1989) The fermentation pathways of Escherichia coli. FEMS Microbiol Rev 63:223–234Google Scholar
  8. Clomburg JM, Gonzalez R (2013) Anaerobic fermentation of glycerol: a platform for renewable fuels and chemicals. Trends Biotechnol 31:20–28. doi: 10.1016/j.tibtech.2012.10.006 CrossRefPubMedGoogle Scholar
  9. Dammer L, Carus M, Raschka A et al (2013) Market developments of and opportunities for biobased products and chemicals. Final report. Available via nova-Institute for Ecology and Innovation Accessed 11 July 2016
  10. Datta R, Henry M (2006) Lactic acid: recent advances in products, processes and technologies—a review. Chem Technol Biotechnol 1129:1119–1129. doi: 10.1002/jctb CrossRefGoogle Scholar
  11. de Jong E, Higson A, Walsh P et al (Not date) Bio-based chemicals—value added products from biorefineries. EA Bioenergy, Task 42 Biorefinery. Accessed 19 July 2016
  12. Dharmadi Y, Murarka A, Gonzalez R (2006) Anaerobic fermentation of glycerol by Escherichia coli: a new platform for metabolic engineering. Biotechnol Bioeng 94:821–829. doi: 10.1002/bit.21025 CrossRefPubMedGoogle Scholar
  13. Dien BS, Nichols NN, Bothast RJ (2001) Recombinant Escherichia coli engineered for production of L-lactic acid from hexose and pentose sugars. J Ind Microbiol Biotechnol 27:259–264. doi: 10.1038/sj/jim/7000195 CrossRefPubMedGoogle Scholar
  14. Dien BS, Nichols NN, Bothast RJ (2002) Fermentation of sugar mixtures using Escherichia coli catabolite repression mutants engineered for production of L-lactic acid. J Ind Microbiol Biotechnol 29:221–227. doi: 10.1038/sj.jim.7000299 CrossRefPubMedGoogle Scholar
  15. Durnin G, Clomburg J, Yeates Z et al (2009) Understanding and harnessing the microaerobic metabolism of glycerol in Escherichia coli. Biotechnol Bioeng 103:148–161. doi: 10.1002/bit.22246 CrossRefPubMedGoogle Scholar
  16. Golden JS, Handfield RB, Daystar J, McConnell TE (2015) An economic impact analysis of the U.S. biobased products industry: a report to the Congress of the United States of America. A Joint Publication of the Duke Center for Sustainability & Commerce and the Supply Chain Resource Cooperative at North Carolina State University. Accessed 11 Aug 2016
  17. Gonzalez R, Murarka A, Dharmadi Y et al (2008) A new model for the anaerobic fermentation of glycerol in enteric bacteria: trunk and auxiliary pathways in Escherichia coli. Metabol Eng 10:234–245. doi: 10.1016/j.ymben.2008.05.001 CrossRefGoogle Scholar
  18. Grabar TB, Zhou S, Shanmugam KT et al (2006) Methylglyoxal bypass identified as source of chiral contamination in l(+) and d(-)-lactate fermentations by recombinant Escherichia coli. Biotechnol Lett 28:1527–1535. doi: 10.1007/s10529-006-9122-7 CrossRefPubMedGoogle Scholar
  19. Gupta S, Clark DP (1989) Escherichia coli derivatives lacking both alcohol dehydrogenase and phosphotransacetylase grow anaerobically by lactate fermentation. J Bacteriol 171:3650–3655CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gupta B, Revagade N, Hilborn J (2007) Poly (lactic acid) fiber: an overview. Prog Polym Sci 32:455–482. doi: 10.1016/j.progpolymsci.2007.01.005 CrossRefGoogle Scholar
  21. Henton DE, Gruber P, Lunt J et al (2005) Polylactic acid technology. In: Mohanty AK, Misra M, Drzal LT (eds) Natural fibers, biopolymers, and biocomposites. CRC Press, Boca Raton, pp 527–578Google Scholar
  22. John RP, Anisha GS, Nampoothiri KM et al (2009) Direct lactic acid fermentation: focus on simultaneous saccharification and lactic acid production. Biotechnol Adv 27:145–152. doi: 10.1016/j.biotechadv.2008.10.004 CrossRefPubMedGoogle Scholar
  23. Juturu V, Wu JC (2015) Microbial production of lactic acid: the latest development. Crit Rev Biotechnol 36:967–977. doi: 10.3109/07388551.2015.1066305
  24. Lammens TM, Potting J, Sanders JPM et al (2011) Environmental comparison of biobased chemicals from glutamic acid with their petrochemical equivalents. Environ Sci Technol 45(19):8521–8528. doi: 10.1021/es201869e CrossRefPubMedGoogle Scholar
  25. Lim L, Auras R, Rubino M (2008) Progress in polymer science processing technologies for poly (lactic acid). Prog Polym Sci 33:820–852. doi: 10.1016/j.progpolymsci.2008.05.004 CrossRefGoogle Scholar
  26. Liu H, Kang J, Qi Q et al (2011) Production of lactate in Escherichia coli by redox regulation genetically and physiologically. Appl Biochem Biotechnol 164:162–169. doi: 10.1007/s12010-010-9123-9 CrossRefPubMedGoogle Scholar
  27. Mäki-Arvela P, Simakova IL, Salmi T et al (2014) Production of lactic acid/lactates from biomass and their catalytic transformations to commodities. Chem Rev 114:1909–1971. doi: 10.1021/cr400203v CrossRefPubMedGoogle Scholar
  28. Martinez A, Rodríguez ME, York SW et al (2000) Effects of Ca(OH)2 treatments (“Overliming”) on the composition and toxicity of bagasse hemicellulose hydrolysate. Biotechnol Bioeng 69:526–536. doi: 10.1002/1097-0290(20000905)69:5<526:AID-BIT7>3.0.CO;2-E CrossRefPubMedGoogle Scholar
  29. Martinez A, Rodríguez ME, Wells ML et al (2001) Detoxification of dilute acid hydrolysates of lignocellulose with lime. Biotechnol Progress 17:287–293. doi: 10.1021/bp0001720 CrossRefGoogle Scholar
  30. Mazumdar S, Clomburg JM, Gonzalez R (2010) Escherichia coli strains engineered for homofermentative production of d-lactic acid from glycerol. Appl Environ Microbiol 76:4327–4336. doi: 10.1128/AEM.00664-10 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Nampoothiri KM, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 101:8493–8501. doi: 10.1016/j.biortech.2010.05.092 CrossRefGoogle Scholar
  32. Okano K, Tanaka T, Ogino C et al (2010) Biotechnological production of enantiomeric pure lactic acid from renewable resources: recent achievements, perspectives, and limits. Appl Microbiol Biotechnol 85:413–423. doi: 10.1007/s00253-009-2280-5 CrossRefPubMedGoogle Scholar
  33. Oren A (2005) A hundred years of Dunaliella research: 1905–2005. Saline Syst 1:2. doi: 10.1186/1746-1448-1-2 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Orencio-Trejo M, Utrilla J, Fernández-Sandoval MT et al (2010) Engineering the Escherichia coli fermentative metabolism. Adv Biochem Eng Biotech 121:71–107. doi: 10.1007/10_2009_61 Google Scholar
  35. Schut JH (2008) PLA biopolymers-new copolymers, expandable beads, engineering alloys & more. Plast Technol 66–69Google Scholar
  36. Shukla VB, Zhou S, Yomano LP et al (2004) Production of d(-)-lactate from sucrose and molasses. Biotechnol Lett 26:689–693. doi: 10.1023/B:BILE.0000024088.36803.4e CrossRefPubMedGoogle Scholar
  37. Tsao GT, Cao NJ, Du J (1999) Production of multifunctional organic acids from renewable resources. In: Tsao GT (ed) Advances in biochemical engineering/biotechnology, vol 65. Springer, Berlin, pp 243–280Google Scholar
  38. Utrilla J, Gosset G, Martinez A (2009) ATP limitation in a pyruvate formate lyase mutant of Escherichia coli MG1655 increases glycolytic flux to d-lactate. J Ind Microbiol Biotechnol 36:1057–1062. doi: 10.1007/s10295-009-0589-9 CrossRefPubMedGoogle Scholar
  39. Utrilla J, Licona-Cassani C, Marcellin E et al (2012) Engineering and adaptive evolution of Escherichia coli for d-lactate fermentation reveals GatC as a xylose transporter. Metab Eng 14:469–476. doi: 10.1016/j.ymben.2012.07.007 CrossRefPubMedGoogle Scholar
  40. Utrilla J, Vargas-Tah A, Trujillo-Martínez B et al (2016) Production of d-lactate from sugarcane bagasse and corn stover hydrolysates using metabolic engineered Escherichia coli strains. Bioresour Technol . doi: 10.1016/j.biortech.2016.08.067 PubMedGoogle Scholar
  41. Vargas-Tah A, Moss-Acosta CL, Trujillo-Martinez B et al (2015) Non-severe thermochemical hydrolysis of stover from white corn and sequential enzymatic saccharification and fermentation to ethanol. Bioresour Technol 198:611–618. doi: 10.1016/j.biortech.2015.09.036 CrossRefPubMedGoogle Scholar
  42. Vijayakumar J, Aravindan R, Viruthagiri T (2008) Recent trends in the production, purification and application of lactic acid. Chem Biochem Eng Q 22(2):245–264Google Scholar
  43. Vijayendran B (2010) Bio products from bio refineries-trends, challenges and opportunities. J Bus Chem 7:109–115Google Scholar
  44. Vishnu C, Seenayya G, Reddy G (2000) Direct conversion of starch to l(+)-lactic acid amylase producing Lactobacillus amylophilus GV6. Bioprocess Eng 23:155–158. doi: 10.1007/PL00009119 CrossRefGoogle Scholar
  45. Wang Q, Ingram LO, Shanmugam KT (2011a) Evolution of D-lactate dehydrogenase activity from glycerol dehydrogenase and its utility for D-lactate production from lignocellulose. Proc Natl Acad Sci U S A 108:18920–18925. doi: 10.1073/pnas.1111085108 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Wang X, Miller EN, Yomano LP et al (2011b) Increased furfural tolerance due to overexpression of NADH-dependent oxidoreductase FucO in Escherichia coli strains engineered for the production of ethanol and lactate. Appl Env Microbiol 77:5132–5140. doi: 10.1128/AEM.05008-11 CrossRefGoogle Scholar
  47. Weber CJ, Haugaard V, Festersen R et al (2002) Production and applications of biobased packaging materials for the food industry. Food Addit Contam 19:172–177. doi: 10.1080/0265203011008748 CrossRefPubMedGoogle Scholar
  48. Wee Y, Kim J, Ryu H (2006) Biotechnological production of lactic acid and its recent applications. Food Technol Biotechnol 44:163–172Google Scholar
  49. Yang YT, San KY, Bennett GN (1999) Redistribution of metabolic fluxes in Escherichia coli with fermentative lactate dehydrogenase overexpression and deletion. Metab Eng 1:141–152. doi: 10.1006/mben.1998.0111 CrossRefPubMedGoogle Scholar
  50. Zhao J, Xu L, Wang Y et al (2013) Homofermentative production of optically pure L-lactic acid from xylose by genetically engineered Escherichia coli B. Microb Cell Fact 12:57. doi: 10.1186/1475-2859-12-57 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Zhou S, Causey TB, Hasona A et al (2003a) Production of optically pure D-lactic acid in mineral salts medium by metabolically engineered Escherichia coli W3110. Appl Environ Microbiol 69:399–407. doi: 10.1128/AEM.69.1.399-407.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Zhou S, Shanmugam KT, Ingram LO (2003b) Functional replacement of the Escherichia coli D-(-)-Lactate dehydrogenase gene (ldhA) with the L-(+)-lactate dehydrogenase gene (ldhL) from Pediococcus acidilactici. Appl Env Microbiol 69:2237–2244. doi: 10.1128/AEM.69.4.2237 CrossRefGoogle Scholar
  53. Zhou L, Zuo Z-R, Chen X-Z et al (2011) Evaluation of genetic manipulation strategies on D-lactate production by Escherichia coli. Curr Microbiol 62:981–989. doi: 10.1007/s00284-010-9817-9 CrossRefPubMedGoogle Scholar
  54. Zhou L, Shen W, Niu DD et al (2012) Fine tuning the transcription of ldhA for d-lactate production. J Ind Microbiol Biotechnol 39:209–1217. doi: 10.1007/s10295-012-1116-y Google Scholar
  55. Zhu J, Shimizu K (2004) The effect of pfl gene knockout on the metabolism for optically pure D-lactate production by Escherichia coli. Appl Microbiol Biotechnol 64:367–375. doi: 10.1007/s00253-003-1499-9 CrossRefPubMedGoogle Scholar
  56. Zhu Y, Eiteman MA, DeWitt K et al (2007) Homolactate fermentation by metabolically engineered Escherichia coli strains. Appl Environ Microbiol 73:456–464. doi: 10.1128/AEM.02022-06 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Alfredo Martinez
    • 1
  • María E. Rodríguez-Alegría
    • 1
  • Maria Conceição Fernandes
    • 2
  • Guillermo Gosset
    • 1
  • Alejandra Vargas-Tah
    • 1
  1. 1.Departamento de Ingeniería Celular y Biocatálisis, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMexico
  2. 2.Centro de Biotecnologia Agrícola e Agro-Alimentar do AlentejoGrupo de Engenharia de ProcessosBejaPortugal

Personalised recommendations