Systems Metabolic Engineering of Saccharomyces cerevisiae for Production of Biochemicals from Biomass

Chapter

Abstract

In the production of biofuels and chemicals from biomass-derived sugars, the yeast Saccharomyces cerevisiae has emerged as a key microbial host. Producing these biochemicals in yields and productivities satisfactory to be useful for establishing a cost-effective production process requires the engineering of the yeast’s metabolism. This is a challenging mission since metabolic pathways are intriguingly connected with genetic regulatory circuits, and we are just deciphering these networks. However, global technologies of systems biology in combination with the adequate design capabilities of synthetic biology, and random or rational mutagenesis through adaptive laboratory evolution have emerged to improve our understanding of basic aspects of yeast cellular processes and come up with proper metabolic engineering strategies (the systems metabolic engineering approach). In this chapter, we will review recent advances in systems metabolic engineering of S. cerevisiae for production of biofuels and commodity chemicals from lignocellulosic biomass.

Keywords

Systems metabolic engineering Saccharomyces cerevisiae Biochemicals Biomass 

References

  1. Agren R, Otero JM, Nielsen J (2013) Genome-scale modeling enables metabolic engineering of Saccharomyces cerevisiae for succinic acid production. J Ind Microbiol Biotechnol 40:735–747. doi:10.1007/s10295-013-1269-3 PubMedCrossRefGoogle Scholar
  2. Akesson M, Förster J, Nielsen J (2004) Integration of gene expression data into genome-scale metabolic models. Metab Eng 6:285–293. doi:10.1016/j.ymben.2003.12.002 PubMedCrossRefGoogle Scholar
  3. Arber W (2000) Genetic variation: molecular mechanisms and impact on microbial evolution. FEMS Microbiol Rev 24:1–7. doi:10.1111/j.1574-6976.2000.tb00529.x PubMedCrossRefGoogle Scholar
  4. Asadollahi MA, Maury J, Patil KR et al (2009) Enhancing sesquiterpene production in Saccharomyces cerevisiae through in silico driven metabolic engineering. Metab Eng 11:328–334. doi:10.1016/j.ymben.2009.07.001 PubMedCrossRefGoogle Scholar
  5. Ask M, Bettiga M, Mapelli V, Olsson L (2013) The influence of HMF and furfural on redox-balance and energy-state of xylose-utilizing Saccharomyces cerevisiae. Biotechnol Biofuels 6:22. doi:10.1186/1754-6834-6-22 PubMedPubMedCentralCrossRefGoogle Scholar
  6. Aung HW, Henry SA, Walker LP (2013) Revising the representation of fatty acid, glycerolipid, and glycerophospholipid metabolism in the consensus model of yeast metabolism. Ind Biotechnol (New Rochelle NY) 9:215–228. doi:10.1089/ind.2013.0013 CrossRefGoogle Scholar
  7. Bailey J (1991) Toward a science of metabolic engineering. Science (80-) 252:1668–1675. doi:10.1126/science.2047876
  8. Barber J (2009) Photosynthetic energy conversion: natural and artificial. Chem Soc Rev 38:185–196. doi:10.1039/b802262n PubMedCrossRefGoogle Scholar
  9. Becker SA, Palsson BO (2008) Context-specific metabolic networks are consistent with experiments. PLoS Comput Biol 4:e1000082. doi:10.1371/journal.pcbi.1000082 PubMedPubMedCentralCrossRefGoogle Scholar
  10. Boer VM, de Winde JH, Pronk JT, Piper MDW (2003) The genome-wide transcriptional responses of Saccharomyces cerevisiae grown on glucose in aerobic chemostat cultures limited for carbon, nitrogen, phosphorus, or sulfur. J Biol Chem 278:3265–3274. doi:10.1074/jbc.M209759200 PubMedCrossRefGoogle Scholar
  11. Bordel S, Agren R, Nielsen J (2010) Sampling the solution space in genome-scale metabolic networks reveals transcriptional regulation in key enzymes. PLoS Comput Biol 6:e1000859. doi:10.1371/journal.pcbi.1000859 PubMedPubMedCentralCrossRefGoogle Scholar
  12. Borodina I, Kildegaard KR, Jensen NB et al (2015) Establishing a synthetic pathway for high-level production of 3-hydroxypropionic acid in Saccharomyces cerevisiae via β-alanine. Metab Eng 27:57–64. doi:10.1016/j.ymben.2014.10.003 PubMedCrossRefGoogle Scholar
  13. Bro C, Knudsen S, Regenberg B et al (2005) Improvement of galactose uptake in Saccharomyces cerevisiae through overexpression of phosphoglucomutase: example of transcript analysis as a tool in inverse metabolic engineering. Appl Environ Microbiol 71:6465–6472. doi:10.1128/AEM.71.11.6465-6472.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bro C, Regenberg B, Förster J, Nielsen J (2006) In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production. Metab Eng 8:102–111. doi:10.1016/j.ymben.2005.09.007 PubMedCrossRefGoogle Scholar
  15. Brochado AR, Matos C, Møller BL et al (2010) Improved vanillin production in baker’s yeast through in silico design. Microb Cell Fact 9:84. doi:10.1186/1475-2859-9-84 PubMedPubMedCentralCrossRefGoogle Scholar
  16. Buijs NA, Zhou YJ, Siewers V, Nielsen J (2015) Long-chain alkane production by the yeast Saccharomyces cerevisiae. Biotechnol Bioeng 112:1275–1279. doi:10.1002/bit.25522 PubMedCrossRefGoogle Scholar
  17. Burgard AP, Pharkya P, Maranas CD (2003) Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol Bioeng 84:647–657. doi:10.1002/bit.10803 PubMedCrossRefGoogle Scholar
  18. Cakar ZP, Turanli-Yildiz B, Alkim C, Yilmaz U (2012) Evolutionary engineering of Saccharomyces cerevisiae for improved industrially important properties. FEMS Yeast Res 12:171–182. doi:10.1111/j.1567-1364.2011.00775.x PubMedCrossRefGoogle Scholar
  19. Cakir T, Efe C, Dikicioglu D et al (2007) Flux balance analysis of a genome-scale yeast model constrained by exometabolomic data allows metabolic system identification of genetically different strains. Biotechnol Prog 23:320–326. doi:10.1021/bp060272r PubMedCrossRefGoogle Scholar
  20. Caspeta L, Nielsen J (2013) Economic and environmental impacts of microbial biodiesel. Nat Biotechnol 31:789–793. doi:10.1038/nbt.2683 PubMedCrossRefGoogle Scholar
  21. Caspeta L, Nielsen J (2015) Thermotolerant yeast strains adapted by laboratory evolution show trade-off at ancestral temperatures and preadaptation to other stresses. MBio. doi:10.1128/mBio.00431-15 PubMedPubMedCentralGoogle Scholar
  22. Caspeta L, Caro-Bermúdez MA, Ponce-Noyola T, Martinez A (2014a) Enzymatic hydrolysis at high-solids loadings for the conversion of agave bagasse to fuel ethanol. Appl Energy 113:277–286. doi:10.1016/j.apenergy.2013.07.036 CrossRefGoogle Scholar
  23. Caspeta L, Chen Y, Ghiaci P et al (2014b) Biofuels. Altered sterol composition renders yeast thermotolerant. Science 346:75–78. doi:10.1126/science.1258137 PubMedCrossRefGoogle Scholar
  24. Caspeta L, Castillo T, Nielsen J (2015) Modifying yeast tolerance to inhibitory conditions of ethanol production processes. Front Bioeng Biotechnol 3:184. doi:10.3389/fbioe.2015.00184 PubMedPubMedCentralCrossRefGoogle Scholar
  25. Caspeta L, Chen Y, Nielsen J (2016) Thermotolerant yeasts selected by adaptive evolution express heat stress response at 30 °C. Sci Rep 6:27003. doi: 10.1038/srep27003
  26. Cautha SC, Gowen CM, Lussier FX, et al (2013) Model-driven design of a Saccharomyces cerevisiae platform strain with improved tyrosine production capabilities. 12th IFAC symposium on computer applications in biotechnology. December, Mumbai, IndiaGoogle Scholar
  27. Celton M, Goelzer A, Camarasa C et al (2012) A constraint-based model analysis of the metabolic consequences of increased NADPH oxidation in Saccharomyces cerevisiae. Metab Eng 14:366–379. doi:10.1016/j.ymben.2012.03.008 PubMedCrossRefGoogle Scholar
  28. Chandrasekaran S, Price ND (2010) Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in Escherichia coli and Mycobacterium tuberculosis. Proc Natl Acad Sci USA 107:17845–17850. doi:10.1073/pnas.1005139107 PubMedPubMedCentralCrossRefGoogle Scholar
  29. Colijn C, Brandes A, Zucker J et al (2009) Interpreting expression data with metabolic flux models: predicting Mycobacterium tuberculosis mycolic acid production. PLoS Comput Biol 5:e1000489. doi:10.1371/journal.pcbi.1000489 PubMedPubMedCentralCrossRefGoogle Scholar
  30. Covert MW, Knight EM, Reed JL et al (2004) Integrating high-throughput and computational data elucidates bacterial networks. Nature 429:92–96. doi:10.1038/nature02456 PubMedCrossRefGoogle Scholar
  31. Covert MW, Schilling CH, Palsoon B (2001) Regulation of gene expression in flux balance models of metabolism. J Theor Biol 213:73–88. doi:10.1006/jtbi.2001.2405 PubMedCrossRefGoogle Scholar
  32. DeRisi JL, Iyer VW, Brown PO (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278:680–686. doi:10.1126/science.278.5338.680 (80)PubMedCrossRefGoogle Scholar
  33. Dettman JR, Rodrigue N, Melnyk AH et al (2012) Evolutionary insight from whole-genome sequencing of experimentally evolved microbes. Mol Ecol 21:2058–2077. doi:10.1111/j.1365-294X.2012.05484.x PubMedCrossRefGoogle Scholar
  34. Dobson PD, Smallbone K, Jameson D et al (2010) Further developments towards a genome-scale metabolic model of yeast. BMC Syst Biol 4:145. doi:10.1186/1752-0509-4-145 PubMedPubMedCentralCrossRefGoogle Scholar
  35. Dragosits M, Mattanovich D (2013) Adaptive laboratory evolution—principles and applications for biotechnology. Microb Cell Fact 12:64. doi:10.1186/1475-2859-12-64 PubMedPubMedCentralCrossRefGoogle Scholar
  36. Drake JW (1991) A constant rate of spontaneous mutation in DNA-based microbes. Proc Natl Acad Sci USA 88:7160–7164PubMedPubMedCentralCrossRefGoogle Scholar
  37. Duarte NC, Herrgård MJ, Palsson BØ (2004) Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. Genome Res 14:1298–1309. doi:10.1101/gr.2250904 PubMedPubMedCentralCrossRefGoogle Scholar
  38. Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci 95:14863–14868. doi:10.1073/pnas.95.25.14863 PubMedPubMedCentralCrossRefGoogle Scholar
  39. Eliasson A, Christensson C, Wahlbom CF, Hahn-Hagerdal B (2000) Anaerobic xylose fermentation by gecombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Appl Environ Microbiol 66:3381–3386. doi:10.1128/AEM.66.8.3381-3386.2000 PubMedPubMedCentralCrossRefGoogle Scholar
  40. Famili I, Forster J, Nielsen J, Palsson BO (2003) Saccharomyces cerevisiae phenotypes can be predicted by using constraint-based analysis of a genome-scale reconstructed metabolic network. Proc Natl Acad Sci USA 100:13134–13139. doi:10.1073/pnas.2235812100 PubMedPubMedCentralCrossRefGoogle Scholar
  41. Farwick A, Bruder S, Schadeweg V et al (2014) Engineering of yeast hexose transporters to transport D-xylose without inhibition by D-glucose. Proc Natl Acad Sci USA 111:5159–5164. doi:10.1073/pnas.1323464111 PubMedPubMedCentralCrossRefGoogle Scholar
  42. Feng X, Lian J, Zhao H (2015) Metabolic engineering of Saccharomyces cerevisiae to improve 1-hexadecanol production. Metab Eng 27:10–19. doi:10.1016/j.ymben.2014.10.001 PubMedCrossRefGoogle Scholar
  43. Field CB (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240. doi:10.1126/science.281.5374.237 (80-)PubMedCrossRefGoogle Scholar
  44. Förster J, Famili I, Fu P (2003a) Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res 13:244–253PubMedPubMedCentralCrossRefGoogle Scholar
  45. Förster J, Famili I, Palsson BO, Nielsen J (2003b) Large-scale evaluation of in silico gene deletions in Saccharomyces cerevisiae. OMICS 7:193–202. doi:10.1089/153623103322246584 PubMedCrossRefGoogle Scholar
  46. Gasch AP, Spellman PT, Kao CM et al (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11:4241–4257. doi:10.1091/mbc.11.12.4241 PubMedPubMedCentralCrossRefGoogle Scholar
  47. Gawand P, Hyland P, Ekins A et al (2013) Novel approach to engineer strains for simultaneous sugar utilization. Metab Eng 20:63–72. doi:10.1016/j.ymben.2013.08.003 PubMedCrossRefGoogle Scholar
  48. Ghosh A, Zhao H, Price ND (2011) Genome-scale consequences of cofactor balancing in engineered pentose utilization pathways in Saccharomyces cerevisiae. PLoS ONE 6:e27316. doi:10.1371/journal.pone.0027316 PubMedPubMedCentralCrossRefGoogle Scholar
  49. Giaever G, Chu AM, Ni L et al (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418:387–391. doi:10.1038/nature00935 PubMedCrossRefGoogle Scholar
  50. Goffeau A, Barrell BG, Bussey H et al (1996) Life with 6000 Genes. Science 274:546–567. doi:10.1126/science.274.5287.546 (80)PubMedCrossRefGoogle Scholar
  51. Gruchattka E, Kayser O (2015) In vivo validation of in silico predicted metabolic egineering strategies in yeast: disruption of α-ketoglutarate dehydrogenase and expression of ATP-citrate lyase for terpenoid production. PLoS ONE 10:e0144981. doi:10.1371/journal.pone.0144981 PubMedPubMedCentralCrossRefGoogle Scholar
  52. Guo W, Feng X (2016) OM-FBA: integrate transcriptomics data with flux balance analysis to decipher the cell metabolism. PLoS ONE 11:e0154188. doi:10.1371/journal.pone.0154188 PubMedPubMedCentralCrossRefGoogle Scholar
  53. Guo W, Sheng J, Zhao H, Feng X (2016) Metabolic engineering of Saccharomyces cerevisiae to produce 1-hexadecanol from xylose. Microb Cell Fact 15:24. doi:10.1186/s12934-016-0423-9 PubMedPubMedCentralCrossRefGoogle Scholar
  54. Hahn-Hägerdal B, Galbe M, Gorwa-Grauslund MF et al (2006) Bio-ethanol–the fuel of tomorrow from the residues of today. Trends Biotechnol 24:549–556. doi:10.1016/j.tibtech.2006.10.004 PubMedCrossRefGoogle Scholar
  55. Heer D, Sauer U (2008) Identification of furfural as a key toxin in lignocellulosic hydrolysates and evolution of a tolerant yeast strain. Microb Biotechnol 1:497–506. doi:10.1111/j.1751-7915.2008.00050.x PubMedPubMedCentralCrossRefGoogle Scholar
  56. Herrgård MJ, Fong SS, Palsson BØ (2006a) Identification of genome-scale metabolic network models using experimentally measured flux profiles. PLoS Comput Biol 2:e72. doi:10.1371/journal.pcbi.0020072 PubMedPubMedCentralCrossRefGoogle Scholar
  57. Herrgård MJ, Lee B-S, Portnoy V, Palsson BØ (2006b) Integrated analysis of regulatory and metabolic networks reveals novel regulatory mechanisms in Saccharomyces cerevisiae. Genome Res 16:627–635. doi:10.1101/gr.4083206 PubMedPubMedCentralCrossRefGoogle Scholar
  58. Hjersted JL, Henson MA, Mahadevan R (2007) Genome-scale analysis of Saccharomyces cerevisiae metabolism and ethanol production in fed-batch culture. Biotechnol Bioeng 97:1190–1204. doi:10.1002/bit.21332 PubMedCrossRefGoogle Scholar
  59. Huh W-K, Falvo JV, Gerke LC et al (2003) Global analysis of protein localization in budding yeast. Nature 425:686–691. doi:10.1038/nature02026 PubMedCrossRefGoogle Scholar
  60. Ideker T, Thorsson V, Ranish JA et al (2001) Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292:929–934. doi:10.1126/science.292.5518.929 PubMedCrossRefGoogle Scholar
  61. Jeffries T (1985) Emerging technology for fermenting xylose. Trends Biotechnol 3:208–212. doi:10.1016/0167-7799(85)90048-4 CrossRefGoogle Scholar
  62. Jensen PA, Papin JA (2011) Functional integration of a metabolic network model and expression data without arbitrary thresholding. Bioinformatics 27:541–547. doi:10.1093/bioinformatics/btq702 PubMedCrossRefGoogle Scholar
  63. Jensen PA, Lutz KA, Papin JA (2011) TIGER: toolbox for integrating genome-scale metabolic models, expression data, and transcriptional regulatory networks. BMC Syst Biol 5:147. doi:10.1186/1752-0509-5-147 PubMedPubMedCentralCrossRefGoogle Scholar
  64. Jewett MC, Workman CT, Nookaew I et al (2013) Mapping condition-dependent regulation of lipid metabolism in Saccharomyces cerevisiae. G3 (Bethesda) 3:1979–1995. doi:10.1534/g3.113.006601
  65. Jin Y-S, Jeffries TW (2004) Stoichiometric network constraints on xylose metabolism by recombinant Saccharomyces cerevisiae. Metab Eng 6:229–238. doi:10.1016/j.ymben.2003.11.006 PubMedCrossRefGoogle Scholar
  66. Jin Y-S, Alper H, Yang Y-T, Stephanopoulos G (2005) Improvement of xylose uptake and ethanol production in recombinant Saccharomyces cerevisiae through an inverse metabolic engineering approach. Appl Environ Microbiol 71:8249–8256. doi:10.1128/AEM.71.12.8249-8256.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  67. Kerkhoven EJ, Pomraning KR, Baker SE, Nielsen J (2016) Regulation of amino-acid metabolism controls flux to lipid accumulation in Yarrowia lipolytica. npj Syst Biol Appl 2:16005. doi:10.1038/npjsba.2016.5
  68. Kildegaard KR, Hallström BM, Blicher TH et al (2014) Evolution reveals a glutathione-dependent mechanism of 3-hydroxypropionic acid tolerance. Metab Eng 26:57–66. doi:10.1016/j.ymben.2014.09.004 PubMedCrossRefGoogle Scholar
  69. Lee JW, Kim HU, Choi S et al (2011) Microbial production of building block chemicals and polymers. Curr Opin Biotechnol 22:758–767. doi:10.1016/j.copbio.2011.02.011 PubMedCrossRefGoogle Scholar
  70. Lin F-M, Qiao B, Yuan Y-J (2009) Comparative proteomic analysis of tolerance and adaptation of ethanologenic Saccharomyces cerevisiae to furfural, a lignocellulosic inhibitory compound. Appl Environ Microbiol 75:3765–3776. doi:10.1128/AEM.02594-08 PubMedPubMedCentralCrossRefGoogle Scholar
  71. Liu E, Hu Y (2010) Construction of a xylose-fermenting Saccharomyces cerevisiae strain by combined approaches of genetic engineering, chemical mutagenesis and evolutionary adaptation. Biochem Eng J 48:204–210. doi:10.1016/j.bej.2009.10.011 CrossRefGoogle Scholar
  72. Liu ZL, Slininger PJ, Gorsich SW (2005) Enhanced biotransformation of furfural and hydroxymethylfurfural by newly developed ethanologenic yeast strains. Appl Biochem Biotechnol 121–124:451–460PubMedCrossRefGoogle Scholar
  73. Lun DS, Rockwell G, Guido NJ et al (2009) Large-scale identification of genetic design strategies using local search. Mol Syst Biol 5:296. doi:10.1038/msb.2009.57 PubMedPubMedCentralCrossRefGoogle Scholar
  74. Machado D, Herrgård M (2015) Co-evolution of strain design methods based on flux balance and elementary mode analysis. Metab Eng Commun 2:85–92. doi:10.1016/j.meteno.2015.04.001 CrossRefGoogle Scholar
  75. Mo ML, Palsson BO, Herrgård MJ (2009) Connecting extracellular metabolomic measurements to intracellular flux states in yeast. BMC Syst Biol 3:37. doi:10.1186/1752-0509-3-37 PubMedPubMedCentralCrossRefGoogle Scholar
  76. Nielsen J (1998) Metabolic engineering: techniques for analysis of targets for genetic manipulations. Biotechnol Bioeng 58:125–132. doi:10.1002/(SICI)1097-0290(19980420)58:2/3<125:AID-BIT3>3.0.CO;2-N PubMedCrossRefGoogle Scholar
  77. Nielsen (2001) Metabolic engineering. App Microbiol Biotechnol 55:263–283. doi:10.1007/s002530000511
  78. Nielsen J, Jewett M (2008) Impact of systems biology on metabolic engineering of Saccharomyces cerevisiae. FEMS Yeast Res 64:34–50Google Scholar
  79. Nookaew I, Jewett MC, Meechai A et al (2008) The genome-scale metabolic model iIN800 of Saccharomyces cerevisiae and its validation: a scaffold to query lipid metabolism. BMC Syst Biol 2:71. doi:10.1186/1752-0509-2-71 PubMedPubMedCentralCrossRefGoogle Scholar
  80. Orth JD, Thiele I, Palsson BØ (2010) What is flux balance analysis? Nature Biotechnol 28:245–248. doi:10.1038/nbt.1614
  81. Osterlund T, Nookaew I, Nielsen J (2012) Fifteen years of large scale metabolic modeling of yeast: developments and impacts. Biotechnol Adv 30:979–988. doi:10.1016/j.biotechadv.2011.07.021 PubMedCrossRefGoogle Scholar
  82. Österlund T, Nookaew I, Bordel S, Nielsen J (2013) Mapping condition-dependent regulation of metabolism in yeast through genome-scale modeling. BMC Syst Biol 7:36. doi:10.1186/1752-0509-7-36 PubMedPubMedCentralCrossRefGoogle Scholar
  83. Otero JM, Cimini D, Patil KR et al (2013) Industrial systems biology of Saccharomyces cerevisiae enables novel succinic acid cell factory. PLoS ONE 8:e54144. doi:10.1371/journal.pone.0054144 PubMedPubMedCentralCrossRefGoogle Scholar
  84. Pagliardini J, Hubmann G, Alfenore S et al (2013) The metabolic costs of improving ethanol yield by reducing glycerol formation capacity under anaerobic conditions in Saccharomyces cerevisiae. Microb Cell Fact 12:29. doi:10.1186/1475-2859-12-29 PubMedPubMedCentralCrossRefGoogle Scholar
  85. Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: Inhibitors and mechanisms of inhibition. Bioresour Technol 74:25–33. doi:10.1016/S0960-8524(99)00161-3
  86. Palsson B (2000) The challenges of in silico biology. Nat Biotechnol 18:1147–1150. doi:10.1038/81125 PubMedCrossRefGoogle Scholar
  87. Park JH, Lee SY, Kim TY, Kim HU (2008) Application of systems biology for bioprocess development. Trends Biotechnol 26:404–412. doi:10.1016/j.tibtech.2008.05.001 PubMedCrossRefGoogle Scholar
  88. Park JM, Kim TY, Lee SY (2009) Constraints-based genome-scale metabolic simulation for systems metabolic engineering. Biotechnol Adv 27:979–988. doi:10.1016/j.biotechadv.2009.05.019 PubMedCrossRefGoogle Scholar
  89. Patil KR, Rocha I, Förster J, Nielsen J (2005) Evolutionary programming as a platform for in silico metabolic engineering. BMC Bioinform 6:308. doi:10.1186/1471-2105-6-308 CrossRefGoogle Scholar
  90. Peng B, Shen Y, Li X et al (2012) Improvement of xylose fermentation in respiratory-deficient xylose-fermenting Saccharomyces cerevisiae. Metab Eng 14:9–18. doi:10.1016/j.ymben.2011.12.001 PubMedCrossRefGoogle Scholar
  91. Petersson A, Almeida JRM, Modig T et al (2006) A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance. Yeast 23:455–464. doi:10.1002/yea.1370 PubMedCrossRefGoogle Scholar
  92. Pharkya P, Maranas CD (2006) An optimization framework for identifying reaction activation/inhibition or elimination candidates for overproduction in microbial systems. Metab Eng 8:1–13. doi:10.1016/j.ymben.2005.08.003 PubMedCrossRefGoogle Scholar
  93. Pharkya P, Burgard AP, Maranas CD (2004) OptStrain: a computational framework for redesign of microbial production systems. Genome Res 14:2367–2376. doi:10.1101/gr.2872004 PubMedPubMedCentralCrossRefGoogle Scholar
  94. Pornkamol U, Franzen CJ (2015) Dynamic flux balancing elucidates NAD(P)H production as limiting response to furfural inhibition in Saccharomyces cerevisiae. Biotechnol J 10:1248–1258. doi:10.1002/biot.201400833 PubMedCrossRefGoogle Scholar
  95. Rabinovitch-Deere CA, Oliver JWK, Rodriguez GM, Atsumi S (2013) Synthetic biology and metabolic engineering approaches to produce biofuels. Chem Rev 113:4611–4632. doi:10.1021/cr300361t PubMedCrossRefGoogle Scholar
  96. Ro DK, Paradise EM, Ouellet M, et al (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943. doi:10.1038/nature04640
  97. Sasano Y, Watanabe D, Ukibe K, Inai T, Ohtsu I, Shimoi H et al (2012) Overexpression of the yeast transcription activator Msn2 confers furfural resistance and increases the initial fermentation rate in ethanol production. J Biosci Bioeng 113:451–455. doi:10.1016/j.jbiosc.2011.11.017 PubMedCrossRefGoogle Scholar
  98. Sauer U (2001) Evolutionary engineering of industrially important microbial phenotypes. In: Nielsen J, Eggeling L, Dynesen J et al (eds) Metabolic engineering. Springer, Berlin, pp 129–169. doi:10.1007/3-540-45300-8_7
  99. Segrè D, Vitkup D, Church GM (2002) Analysis of optimality in natural and perturbed metabolic networks. Proc Natl Acad Sci USA 99:15112–15117. doi:10.1073/pnas.232349399 PubMedPubMedCentralCrossRefGoogle Scholar
  100. Shlomi T, Berkman O, Ruppin E (2005) Regulatory on/off minimization of metabolic flux changes after genetic perturbations. Proc Natl Acad Sci USA 102:7695–7700. doi:10.1073/pnas.0406346102 PubMedPubMedCentralCrossRefGoogle Scholar
  101. Sonderegger M, Sauer U (2003) Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose. Appl Environ Microbiol 69:1990–1998. doi:10.1128/AEM.69.4.1990-1998.2003 PubMedPubMedCentralCrossRefGoogle Scholar
  102. Sonderegger M, Jeppsson M, Hahn-Hagerdal B, Sauer U (2004) Molecular basis for anaerobic growth of Saccharomyces cerevisiae on xylose, investigated by global gene expression and metabolic flux analysis. Appl Environ Microbiol 70:2307–2317. doi:10.1128/AEM.70.4.2307-2317.2004 PubMedPubMedCentralCrossRefGoogle Scholar
  103. Stephanopoulos G (1999) Metabolic fluxes and metabolic engineering. Metab Eng 1:1–11. doi:10.1006/mben.1998.0101 PubMedCrossRefGoogle Scholar
  104. Stephanopoulos G (2007) Challenges in engineering microbes for biofuels production. Science 315:801–804. doi:10.1126/science.1139612 PubMedCrossRefGoogle Scholar
  105. Straathof AJJ (2014) Transformation of biomass into commodity chemicals using enzymes or cells. Chem Rev 114:1871–1908. doi:10.1021/cr400309c PubMedCrossRefGoogle Scholar
  106. Sun Z, Meng H, Li J et al (2014) Identification of novel knockout targets for improving terpenoids biosynthesis in Saccharomyces cerevisiae. PLoS ONE 9:e112615. doi:10.1371/journal.pone.0112615 PubMedPubMedCentralCrossRefGoogle Scholar
  107. Thiele I, Palsson BØ (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc 5:93–121. doi:10.1038/nprot.2009.203 PubMedPubMedCentralCrossRefGoogle Scholar
  108. Valle-Rodríguez JO, Shi S, Siewers V, Nielsen J (2014) Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid ethyl esters, an advanced biofuel, by eliminating non-essential fatty acid utilization pathways. Appl Energy 115:226–232. doi:10.1016/j.apenergy.2013.10.003 CrossRefGoogle Scholar
  109. Van Hoek P, Van Dijken JP, Pronk JT (1998) Effect of specific growth rate on fermentative capacity of baker’s yeast. Appl Environ Microbiol 64:4226–4233PubMedPubMedCentralGoogle Scholar
  110. Vemuri GN, Eiteman MA, McEwen JE et al (2007) Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 104:2402–2407. doi:10.1073/pnas.0607469104 PubMedPubMedCentralCrossRefGoogle Scholar
  111. Verduyn C, Stouthamer AH, Scheffers WA, van Dijken JP (1991) A theoretical evaluation of growth yields of yeasts. A Van Leeuwenhoek 59:49–63. doi:10.1007/BF00582119 CrossRefGoogle Scholar
  112. Wallace-Salinas V, Gorwa-Grauslund M (2013) Adaptive evolution of an industrial strain of Saccharomyces cerevisiae for combined tolerance to inhibitors and temperature. Biotechnol Biofuels 6:151. doi:10.1186/1754-6834-6-151 PubMedPubMedCentralCrossRefGoogle Scholar
  113. Wasylenko TM, Stephanopoulos G (2015) Metabolomic and (13)C-metabolic flux analysis of a xylose-consuming Saccharomyces cerevisiae strain expressing xylose isomerase. Biotechnol Bioeng 112:470–483. doi:10.1002/bit.25447 PubMedCrossRefGoogle Scholar
  114. Wei N, Quarterman J, Kim SR et al (2013) Enhanced biofuel production through coupled acetic acid and xylose consumption by engineered yeast. Nat Commun 4:2580. doi:10.1038/ncomms3580 PubMedGoogle Scholar
  115. Westfall PJ, Pitera DJ, Lenihan JR et al (2012) Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. Proc Natl Acad Sci USA 109:E111–E118. doi:10.1073/pnas.1110740109 PubMedPubMedCentralCrossRefGoogle Scholar
  116. Winzeler EA, Shoemaker DD, Astromoff A et al (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285:901–906PubMedCrossRefGoogle Scholar
  117. Wisselink HW, Toirkens MJ, Wu Q et al (2009) Novel evolutionary engineering approach for accelerated utilization of glucose, xylose, and arabinose mixtures by engineered Saccharomyces cerevisiae strains. Appl Environ Microbiol 75:907–914. doi:10.1128/AEM.02268-08 PubMedCrossRefGoogle Scholar
  118. Yang L, Cluett WR, Mahadevan R (2011) EMILiO: a fast algorithm for genome-scale strain design. Metab Eng 13:272–281. doi:10.1016/j.ymben.2011.03.002 PubMedCrossRefGoogle Scholar
  119. Yang Y-T, Bennett GN, San K-Y (1998) Genetic and metabolic engineering. Electron J Biotechnol 1:20–21. doi:10.4067/S0717-34581998000300003 CrossRefGoogle Scholar
  120. Yona AH, Manor YS, Herbst RH et al (2012) Chromosomal duplication is a transient evolutionary solution to stress. Proc Natl Acad Sci USA 109:21010–21015. doi:10.1073/pnas.1211150109 PubMedPubMedCentralCrossRefGoogle Scholar
  121. Zhou H, Cheng J-S, Wang BL et al (2012) Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae. Metab Eng 14:611–622. doi:10.1016/j.ymben.2012.07.011 PubMedCrossRefGoogle Scholar
  122. Zhou YJ, Buijs NA, Zhu Z et al (2016) Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories. Nat Commun 7:11709. doi:10.1038/ncomms11709 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Universidad Autónoma del Estado de MorelosCuernavacaMexico

Personalised recommendations