Advertisement

The Nature and Relevance of Solvent Stress in Microbes and Mechanisms of Tolerance

  • Mike Manefield
  • Matthew Lee
  • Joanna Koenig
Chapter

Abstract

Solvent stress in microbiology refers to exposure of microorganisms to chemical compounds with relatively low polarity. Environments in which solvent stress is intense are traditionally grouped with other extreme environments with hazardous temperatures, pressures, salinity, acidity and radiation. Extreme Environments with respect to solvents include natural oil or organohalide contaminated environments and industrial settings in which microbes are used to produce solvents or other compounds in dual phase reactor systems. Stress is typically thought to be exerted by interference with membrane function but the ability of solvents to interfere with protein structure is perhaps an underestimated target for solvent stress. It is a significant concern that selection for efflux pumps through exposure to solvents is likely to select for resistance to antimicrobials. Other solvent tolerance mechanisms include membrane adaptation and solvent biodegradation along with more generic strategies such as biofilm formation, motility and endospore formation. Whilst mechanisms of tolerance in aerobic bacteria have been extensively studied, less work has been done on anaerobic bacteria and archaea. An understanding of the nature of solvent stress and microbial strategies to adapt has relevance in natural and biotechnology settings.

Keywords

Efflux Pump Solvent Tolerance Dimethyl Sulphide Solvent Stress Endospore Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

JK and ML were supported by Australian Research Council Linkage Project LP110200610. MM was supported by an August Wilhelm Scheer Visiting Professorship.

References

  1. Asako H, Nakajima H et al (1997) Organic solvent tolerance and antibiotic resistance increased by overexpression of marA in Escherichia coli. Appl Environ Microbiol 63(4):1428–1433PubMedPubMedCentralGoogle Scholar
  2. Atlas RM, Hazen TC (2011) Oil biodegradation and bioremediation: a tale of the two worst spills in U.S. history. Environ Sci Technol 45(16):6709–6715CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bren A, Eisenbach M (2000) How signals are heard during bacterial chemotaxis: protein-protein interactions in sensory signal propagation. J Bacteriol 182(24):6865–6873CrossRefPubMedPubMedCentralGoogle Scholar
  4. Chidthaisong A, Conrad R (2000) Specificity of chloroform, 2-bromoethanesulfonate and fluoroacetate to inhibit methanogenesis and other anaerobic processes in anoxic rice field soil. Soil Biol Biochem 32(7):977–988CrossRefGoogle Scholar
  5. Futagami T, Fukaki Y et al (2013) Evaluation of the inhibitory effects of chloroform on ortho-chlorophenol- and chloroethene-dechlorinating Desulfitobacterium strains. AMB Express 3(1):30CrossRefPubMedPubMedCentralGoogle Scholar
  6. Das T, Sehar S, et al. (2014). Influence of calcium in extracellular DNA mediated bacterial aggregation and biofilm formation. Plos One 9(3)Google Scholar
  7. Das T, Sehar S et al (2013) The roles of extracellular DNA in the structural integrity of extracellular polymeric substance and bacterial biofilm development. Environ Microbiol Rep 5(6):778–786CrossRefPubMedGoogle Scholar
  8. Fernandes P, Ferreira BS et al (2003) Solvent tolerance in bacteria: role of efflux pumps and cross-resistance with antibiotics. Int J Antimicrob Agents 22:211–216CrossRefPubMedGoogle Scholar
  9. Griebenow K, Klibanov AM (1996) On protein denaturation in aqueous-organic mixtures but not in pure organic solvents. J Am Chem Soc 118(47):11695–11700CrossRefGoogle Scholar
  10. Grostern A, Duhamel M et al (2010) Chloroform respiration to dichloromethane by a Dehalobacter population. Environ Microbiol 12(4):1053–1060CrossRefPubMedGoogle Scholar
  11. Hall-Stoodley L, Costerton JW et al (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2(2):95–108CrossRefPubMedGoogle Scholar
  12. Head IM, Jones DM et al (2003) Biological activity in the deep subsurface and the origin of heavy oil. Nat 426(6964):344–352CrossRefGoogle Scholar
  13. Head IM, Jones DM et al (2006) Marine microorganisms make a meal of oil. Nat Rev Microbiol 4(3):173–182CrossRefPubMedGoogle Scholar
  14. Heipieper HJ, Keweloh H et al (1991) Influence of phenols on growth and membrane permeability of free and immobilized Escherichia coli. Appl Environ Microbiol 57(4):1213–1217PubMedPubMedCentralGoogle Scholar
  15. Irving RM, Elfarra AA (2013) Mutagenicity of the cysteine S-conjugate sulfoxides of trichloroethylene and tetrachloroethylene in the Ames test. Toxicol 306:157–161CrossRefGoogle Scholar
  16. Isken S, de Bont JAM (1998) Bacteria tolerant to organic solvents. Extremophiles 2:229–238CrossRefPubMedGoogle Scholar
  17. Kieboom J, Dennis JJ et al (1998) Identification and molecular characterization of an efflux pump involved in Pseudomonas putida S12 solvent tolerance. J Biol Chem 273:85–91CrossRefPubMedGoogle Scholar
  18. Kitanidis PK, McCarthy PL (2012) Delivery and mixing in the subsurface: processes and design principles for in situ remediation. Springer, New YorkGoogle Scholar
  19. Koenig JC, Groissmeier KD et al (2014a) Tolerance of anaerobic bacteria to chlorinated solvents. Microbes Environ 29(1):23–30CrossRefPubMedPubMedCentralGoogle Scholar
  20. Koenig J, Lee M, Manefield M (2014b) Aliphatic organochlorine degradation in sub-surface environments. Rev Environ Sci Bio/Technology 14(1):49–71CrossRefGoogle Scholar
  21. Lee M, Low A et al (2012) Complete chloroform dechlorination by organochlorine respiration and fermentation. Environ Microbiol 14(4):883–894CrossRefPubMedGoogle Scholar
  22. Li XZ, Zhang L et al (1998) Role of the multidrug efflux systems of Pseudomonas aeruginosa in organic solvent tolerance. J Bacteriol 180(11):2987–2991PubMedPubMedCentralGoogle Scholar
  23. Liu ZL (ed) (2011) Microbiology monographs: microbial stress tolerance for biofuels—Systems biology. SpringerGoogle Scholar
  24. Lollar BS, Ballentine CJ (2009) Insights into deep carbon derived from noble gases. Nat Geosci 2(8):543–547CrossRefGoogle Scholar
  25. Maczulak A (2011) Clostridium. Encycl Microbiol 168–173Google Scholar
  26. Martin PAW, Travers RS (1989) Worldwide abundance and distribution of Bacillus thuringiensis isolates. Appl Environ Microbiol 55(10):2437–2442PubMedPubMedCentralGoogle Scholar
  27. Matsumoto M, de Bont JAM et al (2002) Isolation and characterization of the solvent-tolerant Bacillus cereus strain R1. J Biosci Bioeng 94:45–51CrossRefPubMedGoogle Scholar
  28. Mattos C, Ringe D (2001) Proteins in organic solvents. Curr Opin Struct Biol 11(6):761–764CrossRefPubMedGoogle Scholar
  29. Meckenstock RU, Von Netzer F et al (2014) Water droplets in oil are microhabitats for microbial life. Sci 345(6197):673–676CrossRefGoogle Scholar
  30. Moldowan JM, and Dahl J (1994) The molecular fossil record of oleanane and its relation to angiosperms. Sci 265(5173):768–71CrossRefGoogle Scholar
  31. Nicholson WL, Munakata N et al (2000) Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol Mol Biol Rev 64(3):548–572CrossRefPubMedPubMedCentralGoogle Scholar
  32. Pinkart HC, White DC (1997) Phospholipid biosynthesis and solvent tolerance in Pseudomonas putida strains. J Bacteriol 179(13):4219–4226CrossRefPubMedPubMedCentralGoogle Scholar
  33. Ramos JL, Duque E et al (2002) Mechanisms of solvent tolerance in gram-negative bacteria. Ann Rev Microbiol 56:743–768CrossRefGoogle Scholar
  34. Rickard AH, Leach SA et al (2002) Phylogenetic relationships and coaggregation ability of freshwater biofilm bacteria. Appl Environ Microbiol 68(7):3644–3650CrossRefPubMedPubMedCentralGoogle Scholar
  35. Sardessai YN, Bhosle S (2004) Industrial potential of organic solvent tolerant bacteria. Biotechnol Prog 20(3):655–660CrossRefPubMedGoogle Scholar
  36. Segura A, Duque E et al (2004) Fatty acid biosynthesis is involved in solvent tolerance in Pseudomonas putida DOT-T1E. Environ Microbiol 6(4):416–423CrossRefPubMedGoogle Scholar
  37. Segura A, Molina L et al (2012) Solvent tolerance in Gram-negative bacteria. Curr Opin Biotechnol 23(3):415–421CrossRefPubMedGoogle Scholar
  38. Shimizu K (2015) Metabolic regulation and coordination of the metabolism in bacteria in response to a variety of growth conditions. Adv Biochem Eng Biotechnol 1–51. doi:  10.1007/10_2015_320
  39. Sikkema J, de Bont JAM et al (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59(2):201–222PubMedPubMedCentralGoogle Scholar
  40. Tomas CA, Welker NE et al (2003) Overexpression of groESL in Clostridium acetobutylicum results in increased solvent production and tolerance, prolonged metabolism, and changes in the cell’s transcriptional program. Appl Environ Microbiol 69(8):4951–4965CrossRefPubMedPubMedCentralGoogle Scholar
  41. Torres S, Pandey A et al (2011) Organic solvent adaptation of Gram positive bacteria: applications and biotechnological potentials. Biotechnol Adv 29(4):442–452CrossRefPubMedGoogle Scholar
  42. Vamvakas S, Herkenhoff M et al (1989) Mutagenicity of tetrachloroethene in the ames test—metabolic activation by conjugation with glutathione. J Biochem Toxicol 4:21–27CrossRefPubMedGoogle Scholar
  43. White SH, Wimley WC (1999) Membrane protein folding and stability: physical principles. Annu Rev Biophys Biomol Struct 28:319–365CrossRefPubMedGoogle Scholar
  44. Yung PY, Grasso LL et al (2016) Global transcriptomic responses of Escherichia coli K-12 to volatile organic compounds. Sci Rep 6:19899CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Biotechnology and Biomolecular SciencesUniversity of NSWSydneyAustralia
  2. 2.Urban Water Systems Engineering, Technical University MunichGarchingGermany

Personalised recommendations