Advertisement

Hearing with Cochlear Implants and Hearing Aids in Complex Auditory Scenes

  • Ruth Y. LitovskyEmail author
  • Matthew J. Goupell
  • Sara M. Misurelli
  • Alan Kan
Chapter
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 60)

Abstract

One of the most important tasks that humans face is communication in complex, noisy acoustic environments. In this chapter, the focus is on populations of children and adult listeners who suffer from hearing loss and are fitted with cochlear implants (CIs) and/or hearing aids (HAs) in order to hear. The clinical trend is to provide patients with the ability to hear in both ears. This trend to stimulate patients in both ears has stemmed from decades of research with normal-hearing (NH) listeners, demonstrating the importance of binaural and spatial cues for segregating multiple sound sources. There are important effects due to the type of stimuli used, testing parameters, and auditory task utilized. The review of research in hearing impaired populations notes auditory cues that are potentially available to users of CIs and HAs. In addition, there is discussion of limitations resulting from the ways that devices handle auditory cues, auditory deprivation, and other factors that are inherently problematic for these patients.

Keywords

Cochlear implants Cocktail party Hearing loss Noise Speech understanding 

Notes

Compliance with Ethics Requirements

Ruth Litovsky received travel support for a conference from Cochlear Ltd. and from MedEl.

Matthew Goupell had no conflicts of interest.

Alan Kan owns stocks in Cochlear Ltd.

Sara Misurelli had no conflicts of interest.

References

  1. Aronoff, J. M., Yoon, Y. S., Freed, D. J., Vermiglio, A. J., et al. (2010). The use of interaural time and level difference cues by bilateral cochlear implant users. The Journal of the Acoustical Society of America, 127(3), EL87–EL92.Google Scholar
  2. Başkent, D., & Shannon, R. V. (2004). Frequency-place compression and expansion in cochlear implant listeners. The Journal of the Acoustical Society of America, 116(5), 3130–3140.CrossRefPubMedGoogle Scholar
  3. Bentler, R. A., Egge, J. L., Tubbs, J. L., Dittberner, A. B., & Flamme, G. A. (2004). Quantification of directional benefit across different polar response patterns. Journal of the American Academy of Audiology, 15(9), 649–659.CrossRefPubMedGoogle Scholar
  4. Bernstein, J., Goupell, M. J., Schuchman, G. I., Rivera, A. L., & Brungart, D. S. (2016). Having two ears facilitates the perceptual separation of concurrent talkers for bilateral and single-sided deaf cochlear implantees. Ear and Hearing, 37(3), 289–302.CrossRefPubMedGoogle Scholar
  5. Bernstein, L. R., & Trahiotis, C. (2002). Enhancing sensitivity to interaural delays at high frequencies by using “transposed stimuli.” The Journal of the Acoustical Society of America, 112(3 Pt. 1), 1026–1036.Google Scholar
  6. Bertoli, S., Staehelin, K., Zemp, E., Schindler, C., et al. (2009). Survey on hearing aid use and satisfaction in Switzerland and their determinants. International Journal of Audiology, 48(4), 183–195.CrossRefPubMedGoogle Scholar
  7. Bingabr, M., Espinoza-Varas, B., & Loizou, P. C. (2008). Simulating the effect of spread of excitation in cochlear implants. Hearing Research, 241(1–2), 73–79.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bronkhorst, A. W. (2000). The cocktail party phenomenon: A review of research on speech intelligibility in multiple-talker conditions. Acta Acustica united with Acustica, 86(1), 117–128.Google Scholar
  9. Buss, E., Pillsbury, H. C., Buchman, C. A., Pillsbury, C. H., et al. (2008). Multicenter U.S. bilateral MED-EL cochlear implantation study: speech perception over the first year of use. Ear and Hearing, 29(1), 20–32.PubMedGoogle Scholar
  10. Byrne, D., & Noble, W. (1998). Optimizing sound localization with hearing AIDS. Trends in Amplification, 3(2), 51–73.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chadha, N. K., Papsin, B. C., Jiwani, S., & Gordon, K. A. (2011). Speech detection in noise and spatial unmasking in children with simultaneous versus sequential bilateral cochlear implants. Otology & Neurotology, 32(7), 1057–1064.CrossRefGoogle Scholar
  12. Cherry, E. C. (1953). Some experiments on the recognition of speech, with one and with two ears. The Journal of the Acoustical Society of America, 25, 975–979.CrossRefGoogle Scholar
  13. Ching, T. Y., van Wanrooy, E., Dillon, H., & Carter, L. (2011). Spatial release from masking in normal-hearing children and children who use hearing aids. The Journal of the Acoustical Society of America, 129(1), 368–375.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Chung, K. (2004). Challenges and recent developments in hearing aids. Part I. Speech understanding in noise, microphone technologies and noise reduction algorithms. Trends in Amplification, 8(3), 83–124.Google Scholar
  15. Churchill, T. H., Kan, A., Goupell, M. J., & Litovsky, R. Y. (2014). Spatial hearing benefits demonstrated with presentation of acoustic temporal fine structure cues in bilateral cochlear implant listenersa). The Journal of the Acoustical Society of America, 136(3), 1246–1256.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Cleary, M., Pisoni, D. B., & Geers, A. E. (2001). Some measures of verbal and spatial working memory in eight- and nine-year-old hearing-impaired children with cochlear implants. Ear and Hearing, 22(5), 395–411.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Cord, M. T., Surr, R. K., Walden, B. E., & Olson, L. (2002). Performance of directional microphone hearing aids in everyday life. Journal of the American Academy of Audiology, 13(6), 295–307.PubMedGoogle Scholar
  18. Cox, R. M., Schwartz, K. S., Noe, C. M., & Alexander, G. C. (2011). Preference for one or two hearing AIDS among adult patients. Ear and Hearing, 32(2), 181–197.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Dillon, H. (2012). Hearing aids. New York: Thieme.Google Scholar
  20. Dittberner, A. B., & Bentler, R. A. (2007). Predictive measures of directional benefit. Part 1: Estimating the directivity index on a manikin. Ear and Hearing, 28(1), 26–45.CrossRefPubMedGoogle Scholar
  21. Durlach, N. I., Mason, C. R., Shinn-Cunningham, B. G., Arbogast, T. L., et al. (2003). Informational masking: Counteracting the effects of stimulus uncertainty by decreasing target-masker similarity. The Journal of the Acoustical Society of America, 114(1), 368–379.CrossRefPubMedGoogle Scholar
  22. Eapen, R. J., Buss, E., Adunka, M. C., Pillsbury, H. C., 3rd, & Buchman, C. A. (2009). Hearing-in-noise benefits after bilateral simultaneous cochlear implantation continue to improve 4 years after implantation. Otology & Neurotology, 30(2), 153–159.CrossRefGoogle Scholar
  23. Edwards, B. (2007). The future of hearing aid technology. Trends in Amplification, 11(1), 31–46.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Festen, J. M., & Plomp, R. (1986). Speech-reception threshold in noise with one and two hearing aids. The Journal of the Acoustical Society of America, 79(2), 465–471.CrossRefPubMedGoogle Scholar
  25. Freyman, R. L., Balakrishnan, U., & Helfer, K. S. (2008). Spatial release from masking with noise-vocoded speech. The Journal of the Acoustical Society of America, 124(3), 1627–1637.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Garadat, S. N., Litovsky, R. Y., Yu, G., & Zeng, F.-G. (2009). Role of binaural hearing in speech intelligibility and spatial release from masking using vocoded speech. The Journal of the Acoustical Society of America, 126(5), 2522–2535.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Garadat, S. N., Litovsky, R. Y., Yu, G., & Zeng, F.-G. (2010). Effects of simulated spectral holes on speech intelligibility and spatial release from masking under binaural and monaural listening. The Journal of the Acoustical Society of America, 127(2), 977–989.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Geers, A., Brenner, C., & Davidson, L. (2003). Factors associated with development of speech perception skills in children implanted by age five. Ear and Hearing, 24(1 Suppl.), 24S–35S.CrossRefPubMedGoogle Scholar
  29. Gordon, K. A., Jiwani, S., & Papsin, B. C. (2013). Benefits and detriments of unilateral cochlear implant use on bilateral auditory development in children who are deaf. Frontiers in Psychology, 4, 719.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Gordon, K. A., & Papsin, B. C. (2009). Benefits of short interimplant delays in children receiving bilateral cochlear implants. Otology & Neurotology, 30(3), 319–331.CrossRefGoogle Scholar
  31. Gordon, K. A., Wong, D. D. E., Valero, J., Jewell, S. F., et al. (2011). Use it or lose it? Lessons learned from the developing brains of children who are deaf and use cochlear implants to hear. Brain Topography, 24(3–4), 204–219.CrossRefPubMedGoogle Scholar
  32. Goupell, M. J. (2015). Interaural envelope correlation change discrimination in bilateral cochlear implantees: Effects of mismatch, centering, and onset of deafness. The Journal of the Acoustical Society of America, 137(3), 1282–1297.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Goupell, M. J., Kan, A., & Litovsky, R. Y. (2013). Mapping procedures can produce non-centered auditory images in bilateral cochlear implantees. The Journal of the Acoustical Society of America, 133(2), EL101–EL107.Google Scholar
  34. Goupell, M. J., & Litovsky, R. Y. (2015). Sensitivity to interaural envelope correlation changes in bilateral cochlear-implant users. The Journal of the Acoustical Society of America, 137(1), 335–349.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Grimes, A. M., Mueller, H. G., & Malley, J. D. (1981). Examination of binaural amplification in children. Ear and Hearing, 2(5), 208–210.CrossRefPubMedGoogle Scholar
  36. Gstoettner, W., Franz, P., Hamzavi, J., Plenk, H., Jr., et al. (1999). Intracochlear position of cochlear implant electrodes. Acta Oto-Laryngologica, 119(2), 229–233.CrossRefPubMedGoogle Scholar
  37. Hawley, M. L., Litovsky, R. Y., & Culling, J. F. (2004). The benefit of binaural hearing in a cocktail party: effect of location and type of interferer. The Journal of the Acoustical Society of America, 115(2), 833–843.CrossRefPubMedGoogle Scholar
  38. Henkin, Y., Waldman, A., & Kishon-Rabin, L. (2007). The benefits of bilateral versus unilateral amplification for the elderly: Are two always better than one? Journal of Basic and Clinical Physiology and Pharmacology, 18(3), 201–216.CrossRefPubMedGoogle Scholar
  39. Hochmair, I., Nopp, P., Jolly, C., Schmidt, M., et al. (2006). MED-EL cochlear implants: State of the art and a glimpse into the future. Trends in Amplification, 10(4), 201–219.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Hornsby, B. W., & Ricketts, T. A. (2007). Effects of noise source configuration on directional benefit using symmetric and asymmetric directional hearing aid fittings. Ear and Hearing, 28(2), 177–186.CrossRefPubMedGoogle Scholar
  41. Ihlefeld, A., & Litovsky, R. Y. (2012). Interaural level differences do not suffice for restoring spatial release from masking in simulated cochlear implant listening. PLoS ONE, 7(9), e45296.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Johnstone, P. M., & Litovsky, R. Y. (2006). Effect of masker type and age on speech intelligibility and spatial release from masking in children and adults. The Journal of the Acoustical Society of America, 120(4), 2177–2189.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Johnstone, P. M., Nabelek, A. K., & Robertson, V. S. (2010). Sound localization acuity in children with unilateral hearing loss who wear a hearing aid in the impaired ear. Journal of the American Academy of Audiology, 21(8), 522–534.CrossRefPubMedGoogle Scholar
  44. Jones, G. L., & Litovsky, R. Y. (2011). A cocktail party model of spatial release from masking by both noise and speech interferers. The Journal of the Acoustical Society of America, 130(3), 1463–1474.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Kan, A., & Litovsky, R. Y. (2015). Binaural hearing with electrical stimulation. Hearing Research, 322, 127–137.CrossRefPubMedGoogle Scholar
  46. Kan, A., Litovsky, R. Y., & Goupell, M. J. (2015). Effects of interaural pitch matching and auditory image centering on binaural sensitivity in cochlear implant users. Ear and Hearing, 36(3), e62–e68.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Kan, A., Stoelb, C., Litovsky, R. Y., & Goupell, M. J. (2013). Effect of mismatched place-of-stimulation on binaural fusion and lateralization in bilateral cochlear-implant usersa). The Journal of the Acoustical Society of America, 134(4), 2923–2936.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Kaplan-Neeman, R., Muchnik, C., Hildesheimer, M., & Henkin, Y. (2012). Hearing aid satisfaction and use in the advanced digital era. Laryngoscope, 122(9), 2029–2036.CrossRefPubMedGoogle Scholar
  49. Kates, J. M., & Arehart, K. H. (2005). A model of speech intelligibility and quality in hearing aids. In IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), New Paltz, NY, October 16–19, 2005.Google Scholar
  50. Kerber, S., & Seeber, B. U. (2012). Sound localization in noise by normal-hearing listeners and cochlear implant users. Ear and Hearing, 33(4), 445–457.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Kobler, S., & Rosenhall, U. (2002). Horizontal localization and speech intelligibility with bilateral and unilateral hearing aid amplification. International Journal of Audiology, 41(7), 395–400.CrossRefPubMedGoogle Scholar
  52. Kokkinakis, K., & Loizou, P. C. (2010). Multi-microphone adaptive noise reduction strategies for coordinated stimulation in bilateral cochlear implant devices. The Journal of the Acoustical Society of America, 127(5), 3136–3144.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Laback, B., Egger, K., & Majdak, P. (2015). Perception and coding of interaural time differences with bilateral cochlear implants. Hearing Research, 322, 138–150.CrossRefPubMedGoogle Scholar
  54. Lavandier, M., & Culling, J. F. (2007). Speech segregation in rooms: Effects of reverberation on both target and interferer. The Journal of the Acoustical Society of America, 122(3), 1713.CrossRefPubMedGoogle Scholar
  55. Lee, A. K., & Shinn-Cunningham, B. G. (2008). Effects of reverberant spatial cues on attention-dependent object formation. Journal of the Association for Research in Otolaryngology, 9(1), 150–160.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Litovsky, R. Y., & Gordon, K. (2016). Bilateral cochlear implants in children: Effects of auditory experience and deprivation on auditory perception. Hearing Research. doi: 10.1016/j.heares.2016.01.003.PubMedGoogle Scholar
  57. Litovsky, R. Y., Goupell, M. J., Godar, S., Grieco-Calub, T., et al. (2012). Studies on bilateral cochlear implants at the University of Wisconsin’s Binaural Hearing and Speech Laboratory. Journal of the American Academy of Audiology, 23(6), 476–494.PubMedPubMedCentralGoogle Scholar
  58. Litovsky, R. Y., Johnstone, P. M., & Godar, S. P. (2006). Benefits of bilateral cochlear implants and/or hearing aids in children. International Journal of Audiology, 45(Suppl. 1), S78–891.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Litovsky, R. Y., Jones, G. L., Agrawal, S., & van Hoesel, R. (2010). Effect of age at onset of deafness on binaural sensitivity in electric hearing in humans. The Journal of the Acoustical Society of America, 127(1), 400–414.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Litovsky, R. Y., & Misurelli, S. M. (2016). Does bilateral experience lead to improved spatial unmasking of speech in children who use bilateral cochlear implants? Otology & Neurotology, 37(2), e35–e42.CrossRefGoogle Scholar
  61. Litovsky, R. Y., Parkinson, A., & Arcaroli, J. (2009). Spatial hearing and speech intelligibility in bilateral cochlear implant users. Ear and Hearing, 30(4), 419.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Loizou, P. C. (1999). Introduction to cochlear implants. IEEE Engineering in Medicine and Biology Magazine, 18(1), 32–42.CrossRefPubMedGoogle Scholar
  63. Loizou, P. C. (2006). Speech processing in vocoder-centric cochlear implants (Vol. 64). Basel, Switzerland: Karger.Google Scholar
  64. Loizou, P. C., Hu, Y., Litovsky, R., Yu, G., et al. (2009). Speech recognition by bilateral cochlear implant users in a cocktail-party setting. The Journal of the Acoustical Society of America, 125(1), 372–383.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Long, C. J., Carlyon, R. P., Litovsky, R. Y., & Downs, D. H. (2006). Binaural unmasking with bilateral cochlear implants. Journal of the Association for Research in Otolaryngology, 7(4), 352–360.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Lu, T., Litovsky, R., & Zeng, F. G. (2011). Binaural unmasking with multiple adjacent masking electrodes in bilateral cochlear implant users. The Journal of the Acoustical Society of America, 129(6), 3934–3945.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Luts, H., Eneman, K., Wouters, J., Schulte, M., et al. (2010). Multicenter evaluation of signal enhancement algorithms for hearing aids. The Journal of the Acoustical Society of America, 127(3), 1491–1505.CrossRefPubMedGoogle Scholar
  68. Macpherson, E. A., & Middlebrooks, J. C. (2002). Listener weighting of cues for lateral angle: The duplex theory of sound localization revisited. The Journal of the Acoustical Society of America, 111(5), 2219–2236.CrossRefPubMedGoogle Scholar
  69. Marrone, N., Mason, C. R., & Kidd, G., Jr. (2008). Evaluating the benefit of hearing aids in solving the cocktail party problem. Trends in Amplification, 12(4), 300–315.CrossRefPubMedPubMedCentralGoogle Scholar
  70. Mencher, G. T., & Davis, A. (2006). Bilateral or unilateral amplification: Is there a difference? A brief tutorial. International Journal of Audiology, 45(Suppl. 1), S3–11.CrossRefPubMedGoogle Scholar
  71. Middlebrooks, J. C., & Green, D. M. (1990). Directional dependence of interaural envelope delays. The Journal of the Acoustical Society of America, 87(5), 2149–2162.CrossRefPubMedGoogle Scholar
  72. Misurelli, S. M., & Litovsky, R. Y. (2012). Spatial release from masking in children with normal hearing and with bilateral cochlear implants: Effect of interferer asymmetry. The Journal of the Acoustical Society of America, 132(1), 380–391.CrossRefPubMedPubMedCentralGoogle Scholar
  73. Misurelli, S. M., & Litovsky, R. Y. (2015). Spatial release from masking in children with bilateral cochlear implants and with normal hearing: Effect of target-interferer similarity. The Journal of the Acoustical Society of America, 138(1), 319–331.CrossRefPubMedPubMedCentralGoogle Scholar
  74. Mok, M., Galvin, K. L., Dowell, R. C., & McKay, C. M. (2007). Spatial unmasking and binaural advantage for children with normal hearing, a cochlear implant and a hearing aid, and bilateral implants. Audiology and Neuro-Otology, 12(5), 295–306.CrossRefPubMedGoogle Scholar
  75. Moore, B. C., & Alcántara, J. I. (2001). The use of psychophysical tuning curves to explore dead regions in the cochlea. Ear and Hearing, 22(4), 268–278.CrossRefPubMedGoogle Scholar
  76. Nelson, D. A., Donaldson, G. S., & Kreft, H. (2008). Forward-masked spatial tuning curves in cochlear implant users. The Journal of the Acoustical Society of America, 123(3), 1522–1543.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Noble, W. (2010). Assessing binaural hearing: results using the speech, spatial and qualities of hearing scale. Journal of the American Academy of Audiology, 21(9), 568–574.CrossRefPubMedGoogle Scholar
  78. Noble, W., & Gatehouse, S. (2006). Effects of bilateral versus unilateral hearing aid fitting on abilities measured by the Speech, Spatial, and Qualities of Hearing Scale (SSQ). International Journal of Audiology, 45(3), 172–181.CrossRefPubMedGoogle Scholar
  79. Noel, V. A., & Eddington, D. K. (2013). Sensitivity of bilateral cochlear implant users to fine-structure and envelope interaural time differences. The Journal of the Acoustical Society of America, 133(4), 2314–2328.CrossRefPubMedPubMedCentralGoogle Scholar
  80. Peters, B. R., Litovsky, R., Parkinson, A., & Lake, J. (2007). Importance of age and postimplantation experience on speech perception measures in children with sequential bilateral cochlear implants. Otology & Neurotology, 28(5), 649–657.CrossRefGoogle Scholar
  81. Pisoni, D. B., & Cleary, M. (2003). Measures of working memory span and verbal rehearsal speed in deaf children after cochlear implantation. Ear and Hearing, 24(1 Suppl.), 106S–120S.CrossRefPubMedPubMedCentralGoogle Scholar
  82. Poon, B. B., Eddington, D. K., Noel, V., & Colburn, H. S. (2009). Sensitivity to interaural time difference with bilateral cochlear implants: Development over time and effect of interaural electrode spacing. The Journal of the Acoustical Society of America, 126(2), 806–815.CrossRefPubMedPubMedCentralGoogle Scholar
  83. Runge, C. L., Jensen, J., Friedland, D. R., Litovsky, R. Y., & Tarima, S. (2011). Aiding and occluding the contralateral ear in implanted children with auditory neuropathy spectrum disorder. Journal of the American Academy of Audiology, 22(9), 567–577.CrossRefPubMedPubMedCentralGoogle Scholar
  84. Seeber, B. U., & Fastl, H. (2008). Localization cues with bilateral cochlear implants. The Journal of the Acoustical Society of America, 123(2), 1030–1042.CrossRefPubMedGoogle Scholar
  85. Shannon, R. V., Galvin, J. J., III, & Baskent, D. (2002). Holes in hearing. Journal of the Association for Research in Otolaryngology, 3(2), 185–199.CrossRefPubMedGoogle Scholar
  86. Siciliano, C. M., Faulkner, A., Rosen, S., & Mair, K. (2010). Resistance to learning binaurally mismatched frequency-to-place maps: Implications for bilateral stimulation with cochlear implants a. The Journal of the Acoustical Society of America, 127(3), 1645–1660.CrossRefPubMedGoogle Scholar
  87. Souza, P. E. (2002). Effects of compression on speech acoustics, intelligibility, and sound quality. Trends in Amplification, 6(4), 131–165.CrossRefPubMedPubMedCentralGoogle Scholar
  88. Swan, I. R., Browning, G. G., & Gatehouse, S. (1987). Optimum side for fitting a monaural hearing aid. 1. Patients’ preference. British Journal of Audiology, 21(1), 59–65.CrossRefPubMedGoogle Scholar
  89. Swan, I., & Gatehouse, S. (1987). Optimum side for fitting a monaural hearing aid 2. Measured benefit. British Journal of Audiology, 21(1), 67–71.CrossRefPubMedGoogle Scholar
  90. van Besouw, R. M., Forrester, L., Crowe, N. D., & Rowan, D. (2013). Simulating the effect of interaural mismatch in the insertion depth of bilateral cochlear implants on speech perception. The Journal of the Acoustical Society of America, 134(2), 1348–1357.CrossRefPubMedGoogle Scholar
  91. Van Deun, L., van Wieringen, A., & Wouters, J. (2010). Spatial speech perception benefits in young children with normal hearing and cochlear implants. Ear and Hearing, 31(5), 702–713.PubMedGoogle Scholar
  92. van Hoesel, R., Bohm, M., Pesch, J., Vandali, A., et al. (2008). Binaural speech unmasking and localization in noise with bilateral cochlear implants using envelope and fine-timing based strategies. The Journal of the Acoustical Society of America, 123(4), 2249–2263.CrossRefPubMedGoogle Scholar
  93. van Hoesel, R. J., Jones, G. L., & Litovsky, R. Y. (2009). Interaural time-delay sensitivity in bilateral cochlear implant users: Effects of pulse rate, modulation rate, and place of stimulation. Journal of the Association for Research in Otolaryngology, 10(4), 557–567.CrossRefPubMedPubMedCentralGoogle Scholar
  94. van Hoesel, R., Tong, Y., Hollow, R., & Clark, G. M. (1993). Psychophysical and speech perception studies: A case report on a binaural cochlear implant subject. The Journal of the Acoustical Society of America, 94(6), 3178–3189.CrossRefPubMedGoogle Scholar
  95. van Hoesel, R. J., & Tyler, R. S. (2003). Speech perception, localization, and lateralization with bilateral cochlear implants. The Journal of the Acoustical Society of America, 113(3), 1617–1630.CrossRefPubMedGoogle Scholar
  96. Watson, C. S. (2005). Some comments on informational masking. Acta Acustica united with Acustica, 91(3), 502–512.Google Scholar
  97. Wiggins, I. M., & Seeber, B. U. (2013). Linking dynamic-range compression across the ears can improve speech intelligibility in spatially separated noise. The Journal of the Acoustical Society of America, 133(2), 1004–1016.CrossRefPubMedGoogle Scholar
  98. Wightman, F. L., & Kistler, D. J. (1992). The dominant role of low-frequency interaural time differences in sound localization. The Journal of the Acoustical Society of America, 91(3), 1648–1661.CrossRefPubMedGoogle Scholar
  99. Zeng, F.-G., Popper, A., & Fay, R. R. (2011). Auditory prostheses: New horizons. New York: Springer Science & Business Media.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ruth Y. Litovsky
    • 1
    Email author
  • Matthew J. Goupell
    • 2
  • Sara M. Misurelli
    • 3
  • Alan Kan
    • 1
  1. 1.Waisman CenterUniversity of Wisconsin–MadisonMadisonUSA
  2. 2.Department of Hearing and Speech SciencesUniversity of MarylandCollege ParkUSA
  3. 3.Department of Communication Sciences and DisordersUniversity of Wisconsin–MadisonMadisonUSA

Personalised recommendations