Mathematical Truth Revisited: Mathematics as a Toolbox

Chapter

Abstract

We discuss the notion of truth in Mathematics as relative to certain structures, very much in line with Bernays’s conception of “bezogene Existenz”. Looking to some concrete examples, we argue that even so-called non-standard structures may have their own rationale. As a result, and in accordance with Bourbaki, structures turn out to be tools and have to be judged with respect to their usefulness rather than with respect to a concept of mathematical truth simpliciter.

References

  1. Antos, C., S.-D. Friedman, R. Honzik, and C. Ternullo (2015). Multiverse conceptions in set theory. Synthese 192(8), 2463–2488.Google Scholar
  2. Bernays, P. (1950). Mathematische Existenz und Widerspruchsfreiheit. In Etudes de Philosophie des Sciences, pp. 11–25. Neuchâtel: Éditions du Griffon. Reprinted in (Bernays, 1976, pp. 92–106).Google Scholar
  3. Bernays, P. (1976). Abhandlungen zur Philosophie der Mathematik. Wissenschaftliche Buchgesellschaft.Google Scholar
  4. Bernays, P. (1979). Bemerkungen zu Lorenzen’s Stellungnahme in der Philosophie der Mathematik. In K. Lorenz (Ed.), Konstruktionen versus Positionen, Volume 1, pp. 3–16. Berlin.Google Scholar
  5. Beth, E. W. (1959). The Foundations of Mathematics. Studies in Logic and the Foundations of Mathematics. North-Holland.Google Scholar
  6. Bourbaki, N. (1950). Architecture of mathematics. The American Mathematical Monthly 57(4), 221–232.Google Scholar
  7. Corry, L. (2004). Modern Algebra and the Rise of Mathematical Structures (Second revised ed.). Birkhäuser.Google Scholar
  8. Feferman, S., H. M. Friedman, P. Maddy, and J. R. Steel (2000). Does mathematics need new axioms? Bulletin of Symbolic Logic 6(4), 401–446.Google Scholar
  9. Franzen, T. (2003). Inexhaustibility: A Non-Exhaustive Treatment, Volume 16 of Lecture Notes in Logic. ASL and AK Peters.Google Scholar
  10. Frege, G. (1976). Wissenschaftlicher Briefwechsel. Felix Meiner. Edited by G. Gabriel et al.Google Scholar
  11. Frege, G. (1983). Über Euklidische Geometrie. In Gottlob Frege. Nachgelassene Schriften (2. ed.)., pp. 182–184. Meiner. The editors date the item back to 1899–1906?Google Scholar
  12. Heyting, A. (1958). On truth in mathematics. In Verslag van de plechtige viering van het honderdvijftigjarig bestaan der Koninklijke Nederlandse Akademie van Wetenschappen met de teksten der bij die gelegenheid gehouden redevoeringen en voordrachten, pp. 277–279. Amsterdam.Google Scholar
  13. Kikuchi, M. and T. Kurahashi (2016). Illusory models of peano arithmetic. The Journal of Symbolic Logic 81(3), 1163–1175.Google Scholar
  14. Kreisel, G. (1967). Informal rigour and completeness proofs. In I. Lakatos (Ed.), Problems in the Philosophy of Mathematics, Volume 47 of Studies in Logic and the Foundations of Mathematics, pp. 138–186. Elsevier.Google Scholar
  15. Lenz, H. (1968). Grundlagen der Geometrie. In D. Laugwitz (Ed.), Überblicke Mathematik 1, 1968, Volume 161/161a of BI Hochschultaschenbücher, pp. 63–86. Bibliographisches Institut.Google Scholar
  16. Mehrtens, H. (1990). Moderne—Sprache—Mathematik. Suhrkamp.Google Scholar
  17. Moschovakis, Y. (2006). Notes on Set Theory (2nd ed.). Undergraduate Texts in Mathematics. Springer.Google Scholar
  18. Poincaré, H. (1902). La science et l’hypothèse. Paris, Flammarion.Google Scholar
  19. Poincaré, H. (1905). Science and Hypothesis. Walter Scott. English translation of Poincaré (1908).Google Scholar
  20. Poincaré, H. (1908). Science et méthode. Paris, Flammarion.Google Scholar
  21. Poincaré, H. (1914). Science and Method. Thomas Nelson and Sons. English translation of Poincaré (1902).Google Scholar
  22. Schoenflies, A. (1913). Entwickelung der Mengenlehre und ihrer Anwendungen. B.G. Teubner. Rework of the Report published in volume VIII of the Jahresberichte der Deutschen Mathematiker-Vereinigung.Google Scholar
  23. Shelah, S. (2003). Logical dreams. Bulletin (New Series) of the American Mathematical Society 40, 203–228.Google Scholar
  24. Stegmüller, W. (1957). Das Wahrheitsproblem und die Idee der Semantik. Springer, Wien.Google Scholar
  25. Tarski, A. (1936). Der Wahrheitsbegriff in den formalisierten Sprachen. Studia Philosophica 1, 261–405.Google Scholar
  26. Toth, I. (1980). Wann und von wem wurde die nichteuklidische Geometrie begründet? Bemerkungen zu Hans Reichardts Gauß und die nichteuklidische Geometrie. Archives internationales d’histoire des sciences 30, 192–205.Google Scholar
  27. Volkert, K. (2010). Poincarés Konventionalismus und der Empirismus in der Geometrie. In P. E. Bour, M. Rebuschi, and L. Rollet (Eds.), Construction. Festschrift for Gerhard Heinzmann on the occasion of his 60th birthday, pp. 113–127. London: College Publications.Google Scholar
  28. Yasugi, M. and N. Passell (Eds.) (2003). Memoirs of a Proof Theorist. World Scientific. English translation of a collection of essays written by Gaisi Takeuti.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.CMA & DM, FCTUniversidade Nova de LisboaLisbonPortugal

Personalised recommendations