Advertisement

What Drives the Usage of Intelligent Traveler Information Systems?

  • Christopher Lisson
  • Margeret Hall
  • Wibke Michalk
  • Christof Weinhardt
Chapter
Part of the Lecture Notes in Mobility book series (LNMOB)

Abstract

Rising mobility demand and increasing complexity of transportation options put a higher pressure on transportation systems and are a challenge in urban areas. A solution requires changes on coordination and behavioral levels. Today’s technology, e.g., omnipresent smartphones, comprises the capabilities to induce such change via supply and demand coordination through intelligent traveler information systems. To identify the driving forces behind the decision to use such systems on an individual level the UTAUT 2 is transferred to the context of mobility by enriching it with explanatory insights from transportation research. The results indicate that the driving forces are user-specific and depend on diverse influencing factors that exceed pure economic and socio-demographic dimensions.

Keywords

Mobility services ITIS UTAUT Mobility behavior SEM-PLS User-heterogeneity 

References

  1. 1.
    Gehl, J.: Cities for People. Island Press, Washington (2010)Google Scholar
  2. 2.
    Knoflacher, H.: Zurück zur Mobilität!: Anstöße zum Umdenken. Ueberreuter, Wien (2013)Google Scholar
  3. 3.
    Batty, M.: The New Science of Cities. The MIT Press, Cambridge (2013)Google Scholar
  4. 4.
    Larson, K. et al.: Updates from our future city. www.youtube.com/watch?v=pUum3OQuI24c. Accessed 20 June 2016
  5. 5.
    Kenyon, S., Lyons, G.: The value of integrated multimodal traveller information and its potential contribution to modal change. Transp. Res. Part F Traffic Psychol. Behav. 6(1), 1–21 (2003)CrossRefGoogle Scholar
  6. 6.
    Sussman, J.S.: Perspectives on Intelligent Transportation Systems (ITS). Springer, New York (2005)Google Scholar
  7. 7.
    Hilty, L.M., et al.: The relevance of information and communication technologies for environmental sustainability—a prospective simulation study. Environ. Model Softw. 21(11), 1618–1629 (2006)CrossRefGoogle Scholar
  8. 8.
    Eriksson, L., et al.: Interrupting habitual car use: the importance of car habit strength and moral motivation for personal car use reduction. Transp. Res. Part F Traffic Psychol. Behav. 11(1), 10–23 (2008)CrossRefGoogle Scholar
  9. 9.
    Gardner, B.: Modelling motivation and habit in stable travel mode contexts. Transp. Res. Part F Traffic Psychol. Behav 12(1), 68–76 (2009)CrossRefGoogle Scholar
  10. 10.
    Verplanken, B., et al.: Attitude versus general habit: antecedents of travel mode choice. J. Appl. Soc. Psychol. 24(4), 285–300 (1994)CrossRefGoogle Scholar
  11. 11.
    Schneider, R.J.: Theory of routine mode choice decisions: An operational framework to increase sustainable transportation. Transp. Policy 25, 128–137 (2013)CrossRefGoogle Scholar
  12. 12.
    Adler, J.L., Blue, V.J.: Toward the design of intelligent traveler information systems. Transp. Res. Part C Emerg. Technol. 6(3), 157–172 (1998)CrossRefGoogle Scholar
  13. 13.
    Kramers, A.: Designing next generation multimodal traveler information systems to support sustainability-oriented decisions. Environ. Model Softw. 56, 83–93 (2014)CrossRefGoogle Scholar
  14. 14.
    Blau, B. et al.: How to coordinate value generation in service networks, Bus. Inf. Syst. Eng. 5(1), 343 (2009)Google Scholar
  15. 15.
    Lisson, C. et al.: Decisions in Mobility Service Networks—Coordinating Demand and Supply Using a Mechanism Design Approach. In: Proceedings of the Forty-Ninth Annual Hawaii International Conference on System Sciences (HICSS) (2016)Google Scholar
  16. 16.
    Bamberg, S., et al.: Choice of travel mode in the theory of planned behavior: the roles of past behavior, habit, and reasoned action. Basic Appl. Soc. Psych. 25(3), 175–187 (2003)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Steg, L., et al.: Instrumental-reasoned and symbolic-affective motives for using a motor car. Transp. Res. Part F Traffic Psychol. Behav. 4(3), 151–169 (2001)CrossRefGoogle Scholar
  18. 18.
    Bamberg, S., et al.: Social context, personal norms and the use of public transportation: two field studies. J. Environ. Psychol. 27(3), 190–203 (2007)CrossRefGoogle Scholar
  19. 19.
    Schiefelbusch, M.: Rational planning for emotional mobility? The case of public transport development. Plan. Theory 9(3), 200–222 (2010)Google Scholar
  20. 20.
    Ben-Akiva, M., Lerman, S.R.: Discrete Choice Analysis: Theory and Application to Travel Demand. The MIT Press, Cambridge (1985)Google Scholar
  21. 21.
    Grotenhuis, J.-W., et al.: The desired quality of integrated multimodal travel information in public transport: customer needs for time and effort savings. Transp. Policy 14(1), 27–38 (2007)CrossRefGoogle Scholar
  22. 22.
    Chorus, C.G., et al.: Use and effects of advanced traveller information services (ATIS): a review of the literature. Transp. Rev. 26(2), 127–149 (2006)CrossRefGoogle Scholar
  23. 23.
    Abou-Zeid, M., Ben-Akiva, M.: Well-being and activity-based models. Transportation (Amst) 39(6), 1189–1207 (2012)CrossRefGoogle Scholar
  24. 24.
    Maslow, A.H.: Motivation and Personality. Harper Row, New York (1970)Google Scholar
  25. 25.
    Anable, J.: “Complacent Car Addicts” or “Aspiring Environmentalists”? Identifying travel behaviour segments using attitude theory. Transp. Policy 12(1), 65–78 (2005)CrossRefGoogle Scholar
  26. 26.
    Vallerand, R. J.: Toward a hierarchical model of intrinsic and extrinsic motivation. Adv. Exp. Soc. Psychol. 29 (1977)Google Scholar
  27. 27.
    Vallerand, R.J., Lalande, D.R.: The MPIC model: the perspective of the hierarchical model of intrinsic and extrinsic motivation. Psychol. Inq. 22(1), 45–51 (2011)CrossRefGoogle Scholar
  28. 28.
    Axhausen, K.W.: Social networks, mobility biographies, and travel: survey challenges. Environ. Plann. B. Plann. Des. 35(6), 981–997 (2008)CrossRefGoogle Scholar
  29. 29.
    Gärling, T., Axhausen, K.: Introduction: habitual travel choice. Transportation (Amst) 30(1), 1–11 (2003)CrossRefGoogle Scholar
  30. 30.
    Götz, K.: Mobilitätsstile. In: Schöller, O. et al. (eds.) Handbuch Verkehrspolitik, VS Verlag für Sozialwissenschaften, 964 (2008)Google Scholar
  31. 31.
    Seebauer, S., et al.: Technophilia as a driver for using advanced traveler information systems. Transp. Res. Part C Emerg. Technol. 60, 498–510 (2015)CrossRefGoogle Scholar
  32. 32.
    Parasuraman, A., Colby, C.L.: An updated and streamlined technology readiness index: TRI 2.0. J. Serv. Res. 18(1), 59–74 (2014)CrossRefGoogle Scholar
  33. 33.
    Rammstedt, B., John, O.P.: Measuring personality in one minute or less: a 10-item short version of the big five inventory in English and German. J. Res. Pers. 41(1), 203–212 (2007)CrossRefGoogle Scholar
  34. 34.
    Chlond, B. et al.: Data quality and completeness issues in multiday or panel surveys. In: Zmud, J. et al. (eds.) Transport Survey Methods: Best Practice for Decision Making, Emerald Group Publishing Limited, pp. 373–392 (2013)Google Scholar
  35. 35.
    Ajzen, I.: The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 50(2), 179–211 (1991)CrossRefGoogle Scholar
  36. 36.
    Taylor, S., Todd, P.A.: Understanding information technology usage: a test of competing models. Inf. Syst. Res. 6(4), 144–176 (1995)CrossRefGoogle Scholar
  37. 37.
    Limayem, M., et al.: How habit limits the predictive power of intention: the case of information systems continuance. MIS Q. 31(4), 705–737 (2007)Google Scholar
  38. 38.
    Venkatesh, V. et al.: Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. MIS Q. (2012)Google Scholar
  39. 39.
    Grönroos, C.: A service quality model and its marketing implications. Eur. J. Mark. 18(4), 36–44 (1984)CrossRefGoogle Scholar
  40. 40.
    Cronin, J.J., Taylor, S.A.: Measuring quality: a reexamination and extension. J. Mark 56(3), 55–68 (1992)CrossRefGoogle Scholar
  41. 41.
    Diana, M.: Measuring the satisfaction of multimodal travelers for local transit services in different urban contexts. Transp. Res. Part A Policy Pract. 46(1), 1–11 (2012)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Ding, D.X., et al.: e-SELFQUAL: a scale for measuring online self-service quality. J. Bus. Res. 64(5), 508–515 (2011)CrossRefGoogle Scholar
  43. 43.
    MacKenzie, S.B., et al.: Construct measurement and validation procedures in MIS and behavioral research: integrating new and existing techniques. MIS Q. 35(2), 293–334 (2011)Google Scholar
  44. 44.
    Gefen, D. et al.: An update and extension to SEM guidelines for administrative and social science research. MIS Q. 35(2), iii–ixiv (2011)Google Scholar
  45. 45.
    Anable, J., Gatersleben, B.: All work and no play? The role of instrumental and affective factors in work and leisure journeys by different travel modes. Transp. Res. Part A Policy Pract. 39(2–3), 163–181 (2005)CrossRefGoogle Scholar
  46. 46.
    Klein, H.K., Myers, M.D.: A set of principles for conducting and evaluating interpretive field studies in information systems. MIS Q. 23(1), 67–93 (1999)CrossRefGoogle Scholar
  47. 47.
    Flick, U.: An introduction to qualitative research. Sage Publications, Thousand Oaks (2014)Google Scholar
  48. 48.
    Glaser, B.G., Strauss, A. L.: The Discovery of Grounded Theory: Strategies for Qualitative Research. Transaction Publishers (2009)Google Scholar
  49. 49.
    Krippendorf, K.: Content Analysis: An Introduction to its Methodology. Sage Publications (2012)Google Scholar
  50. 50.
    Venkatesh, V., et al.: User acceptance of information technology: toward a unified view. MIS Q. 27(3), 425–478 (2003)Google Scholar
  51. 51.
    Davis, F.D.: Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q 13(3), 319–339 (1989)CrossRefGoogle Scholar
  52. 52.
    Venkatesh, V., Davis, F.D.: A theoretical extension of the technology acceptance model: four field studies. Manage. Sci. 45(2), 186–204 (2000)CrossRefGoogle Scholar
  53. 53.
    Davis, F.D., et al.: Extrinsiacnd intrinsic motivation to use computers in the workplace. J. Appl. Soc. Psychol. 22(14), 1111–1132 (1992)CrossRefGoogle Scholar
  54. 54.
    Rogers, E.: Diffusion of Innovation. Free Press, New York (1995)Google Scholar
  55. 55.
    Bandura, A.: Social Foundations of Thought and Action: A Social Cognitive Theory. Prentice Hall, Englewood Cliffs (1986)Google Scholar
  56. 56.
    Stradling, S.G., et al.: Performance, importance and user disgruntlement: a six-step method for measuring satisfaction with travel modes. Transp. Res. Part A Policy Pract. 41(1), 98–106 (2007)CrossRefGoogle Scholar
  57. 57.
    Davis, F.D.: JSTOR. MIS Q. 13(3), 319–340 (1989)CrossRefGoogle Scholar
  58. 58.
    Thompson, R.L.: Personal computing: toward a conceptual model of utilization. MIS Q. 15(1), 124–143 (1991)CrossRefGoogle Scholar
  59. 59.
    Moore, G.C., Benbasat, I.: Development of an instrument to measure the perceptions of adopting an information technology innovation. Inf. Syst. Res. 2(3), 192–222 (1991)CrossRefGoogle Scholar
  60. 60.
    Xin Ding, D. et al.: The impact of service system design and flow experience on customer satisfaction in online financial services. J. Serv. Res, Vol. 13(1), 96–110 (2009)Google Scholar
  61. 61.
    Taylor, S., Todd, P.A.: Assessing IT usage: the role of prior experience. MIS Q. 19(2), 561–570 (1995)CrossRefGoogle Scholar
  62. 62.
    Brown, S.A., Venkatesh, V.: Model of adoption and technology in households: a baseline model test and extension incorporating household life cycle. MIS Q. 29(3), 399–436 (2005)Google Scholar
  63. 63.
    van der Heijden, H.: User acceptance of hedonic information systems. MIS Q. 28(4), 695–704 (2004)Google Scholar
  64. 64.
    Ben-Akiva, M., Boccara, B.: Discrete choice models with latent choice sets. Int. J. Res. Mark. 12(1), 9–24 (1995)CrossRefGoogle Scholar
  65. 65.
    Dodds, W.B. et al.: Effects of price, brand, and store information on buyers’ product evaluationsGoogle Scholar
  66. 66.
    Zeithaml, V.A., et al.: Problems and strategies in service marketing. J. Mark. 49(2), 33–46 (1985)CrossRefGoogle Scholar
  67. 67.
    Kim, S.S. et al.: Research note—two competing perspectives on automatic use: a theoretical and empirical comparison. Inf. Syst. Res (2005)Google Scholar
  68. 68.
    Ajzen, I., Fishbein, M.: The influence of attitudes on behavior. Handb. Attitudes 173, 173–221 (2005)Google Scholar
  69. 69.
    Groves, R.M., et al.: Survey Methodolog. Wiley, LondonWile (2009)Google Scholar
  70. 70.
    Malhotra, M.: An assessment of survey research in POM: from constructs to theory. J. Oper. Manage. 16(4), 407–425 (1998)CrossRefGoogle Scholar
  71. 71.
    Churchill, G.A.: A paradigm for developing better measures of marketing constructs. J. Mark. Res. 16(1), 64–73 (1979)MathSciNetCrossRefGoogle Scholar
  72. 72.
    Harman, H.: Modern Factor Analysis. University of Chicago Press, Chicago (1976)MATHGoogle Scholar
  73. 73.
    El Hedhli, K., Chebat, J.-C.: Developing and validating a psychometric shopper-based mall equity measure. J. Bus. Res. 62(6), 581–587 (2009)CrossRefGoogle Scholar
  74. 74.
    Bagozzi, R.P., Baumgartner, H.: The evaluation of structural equation models and hypothesis testing. In: Bagozzi, R. (ed.) Principles of marketing research, pp. 386–422. Blackwell Publishers (1994)Google Scholar
  75. 75.
    Fronell, C., Larcker, D.: Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 18(1), 39–50 (1981)CrossRefGoogle Scholar
  76. 76.
    Hair, J., et al.: Multivariate Data Analysise. Prentice Hall, Englewood Cliffs (1998)Google Scholar
  77. 77.
    Cronbach, L.: Coefficient alpha and the internal structure of tests. Psychometrika 16(3), 297–334 (1951)CrossRefGoogle Scholar
  78. 78.
    Caliński, T., Harabasz, J.: A dendrite method for cluster analysis, Commun. Stat. Theory Methods (2007)Google Scholar
  79. 79.
    Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster Analysis. Wiley, New York (2005)MATHGoogle Scholar
  80. 80.
    Gefen, D. et al.: An update and extension to SEM guidelines for administrative and social science research. Editorial Comment. 35(2), III–XII (2011)Google Scholar
  81. 81.
    Ringle, C. et al.: Editor’s comments: a critical look at the use of PLS-SEM in mis quarterly. http://aisel.aisnet.org/misq/vol36/iss1/2 (2012). Accessed 20 June 2016
  82. 82.
    Hu, L., Bentler, P.M.: Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives. Struct. Equ. Model. A Multidiscip. J. 6(1), 1–55 (1999)CrossRefGoogle Scholar
  83. 83.
    Chin, W.W., et al.: A partial least squares latent variable modeling approach for measuring interaction effects: results from a Monte Carlo simulation study and an electronic-mail emotion/adoption study. Inf. Syst. Res. 14(2), 189–217 (2003)MathSciNetCrossRefGoogle Scholar
  84. 84.
    Henseler, J., et al.: Common beliefs and reality about PLS: comments on Ronkko and Evermann (2013). Organ. Res. Methods 17(2), 182–209 (2014)CrossRefGoogle Scholar
  85. 85.
    Stibe, A.: Towards a framework for socially influencing systems: meta-analysis of four PLS-SEM Based Studies. In: MacTavish, T., Basapur, S. (eds.) Persuasive Technology, pp. 172–183. Springer International Publishing, New York (2015)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Christopher Lisson
    • 1
  • Margeret Hall
    • 2
  • Wibke Michalk
    • 3
  • Christof Weinhardt
    • 4
  1. 1.Karlsruhe Institute of TechnologyKarlsruheGermany
  2. 2.University of NebraskaOmahaUSA
  3. 3.BMW AGGarchingGermany
  4. 4.Karlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations