Advertisement

Using Graph Properties and Clustering Techniques to Select Division Mechanisms for Scalable Negotiations

  • Ivan Marsa-MaestreEmail author
  • Catholijn M. Jonker
  • Mark Klein
  • Enrique de la Hoz
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 674)

Abstract

This paper focuses on enabling the use of negotiation for complex system optimisation, which main challenge nowadays is scalability. Our hypothesis is that analysing the underlying network structure of these systems can help divide the problems in subproblems which facilitate distributed decision making through negotiation in these domains. In this paper, we verify this hypothesis with an extensive set of scenarios for a proof-of-concept problem. After selecting a set of network metrics for analysis, we cluster the scenarios according to these metrics and evaluate a set of mediation mechanisms in each cluster. The validation experiments show that the relative performance of the different mediation mechanisms change for each cluster, which confirms that network-based metrics may be useful for mechanism selection in complex networks.

Keywords

Cluster Coefficient Betweenness Centrality Evacuation Time Combinatorial Auction Mediation Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This research has been partially supported by two research grants from the Spanish Ministry of Economy and Competitiveness (grants TEC2013-45183-R and TIN2014-61627-EXP).

References

  1. 1.
    M. Bichler, An experimental analysis of multi-attribute auctions. Decis. Support Syst. 29(3), 249–268 (2000)CrossRefGoogle Scholar
  2. 2.
    V.D. Blondel, J.-L. Guillaume, R. Lambiotte, E. Lefebvre, Fast unfolding of communities in large networks. J. Stat. Mech.: Theory Exp. 2008(10), P10008 (2008)CrossRefGoogle Scholar
  3. 3.
    A. Chechetka, K. Sycara, No-commitment branch and bound search for distributed constraint optimization, in Proceedings of the Fifth International Joint Conference on Autonomous Agents and Multiagent Systems (ACM, 2006), pp. 1427–1429Google Scholar
  4. 4.
    E. de Oliveira, J.M. Fonseca, A. Steiger-Garção, Multi-criteria negotiation on multi-agent systems, in Proceedings of the CEEMAS’99 (1999), p. 190Google Scholar
  5. 5.
    B. de Wilde, A.W. ter Mors, C. Witteveen, Push and rotate: cooperative multi-agent path planning, in Proceedings of the 2013 International Conference on Autonomous Agents and Multi-agent Systems (International Foundation for Autonomous Agents and Multiagent Systems, 2013), pp. 87–94Google Scholar
  6. 6.
    M. Ester, H.-P. Kriegel, J. Sander, X. Xu, A density-based algorithm for discovering clusters in large spatial databases with noise. Kdd 96, 226–231 (1996)Google Scholar
  7. 7.
    S. Fatima, M. Wooldridge, N.R. Jennings, Optimal negotiation of multiple issues in incomplete information settings, in Proceedings of the Third International Joint Conference on Autonomous Agents and Multiagent Systems, vol. 3 (IEEE Computer Society, 2004), pp. 1080–1087Google Scholar
  8. 8.
    T.M. Fruchterman, E.M. Reingold, Graph drawing by force-directed placement. Softw. Pract. Exper. 21(11):1129–1164 (1991)Google Scholar
  9. 9.
    N. Gatti, F. Amigoni, A decentralized bargaining protocol on dependent continuous multi-issue for approximate pareto optimal outcomes, in Proceedings of the Fourth International Joint Conference on Autonomous Agents and Multiagent Systems (ACM, 2005), pp. 1213–1214Google Scholar
  10. 10.
    O. Goldreich, Finding the Shortest Move-Sequence in the Graph-Generalized 15-Puzzle is NP-Hard (Springer, Heidelberg, 2011)Google Scholar
  11. 11.
    K. Hindriks, C. Jonker, D. Tykhonov, Avoiding approximation errors in multi-issue negotiation with issue dependencies, in Proceedings of the 1st International Workshop on Agent-based Complex Automated Negotiations (ACAN 2008) (Citeseer, 2008), pp. 1347–1352Google Scholar
  12. 12.
    J. Kalagnanam, D.C. Parkes, Auctions, bidding and exchange design, in Handbook of Quantitative Supply Chain Analysis (Springer, New York, 2004), pp. 143–212.Google Scholar
  13. 13.
    R. Kinney, P. Crucitti, R. Albert, V. Latora, Modeling cascading failures in the North American power grid. Eur. Phys. J. B-Condens. Matter Complex Syst. 46(1), 101–107 (2005)CrossRefGoogle Scholar
  14. 14.
    M. Klein, P. Faratin, H. Sayama, Y. Bar-Yam, Negotiating complex contracts. Group Decis. Negot. 12(2), 111–125 (2003)CrossRefzbMATHGoogle Scholar
  15. 15.
    D. Kornhauser, G. Miller, P. Spirakis, in Coordinating Pebble Motion on Graphs, the Diameter of Permutation Groups, and Applications (IEEE, 1984)Google Scholar
  16. 16.
    M. Li, Q.B. Vo, R. Kowalczyk, Searching for fair joint gains in agent-based negotiation, in Proceedings of the 8th International Conference on Autonomous Agents and Multiagent Systems, vol. 2 (International Foundation for Autonomous Agents and Multiagent Systems, 2009), pp. 1049–1056Google Scholar
  17. 17.
    I. Marsa-Maestre, M. Klein, C.M. Jonker, R. Aydoğan, From problems to protocols: towards a negotiation handbook. Decis.Support Syst. 60, 39–54 (2014)CrossRefGoogle Scholar
  18. 18.
    P.J. Modi, W.-M. Shen, M. Tambe, M. Yokoo, Adopt: asynchronous distributed constraint optimization with quality guarantees. Artif. Intell. 161(1), 149–180 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    M. Newman, Networks: An Introduction (Oxford University Press, Oxford, 2010)Google Scholar
  20. 20.
    M.E. Newman, D.J. Watts, S.H. Strogatz, Random graph models of social networks. Proc. Natl. Acad. Sci. 99(suppl 1), 2566–2572 (2002)CrossRefzbMATHGoogle Scholar
  21. 21.
    C. Osorio, M. Bierlaire, Mitigating network congestion: analytical models, optimization methods and their applications, in 90th Annual Meeting, number EPFL-TALK-196049 (2011)Google Scholar
  22. 22.
    G. Palla, I. Derényi, I. Farkas, T. Vicsek, Uncovering the overlapping community structure of complex networks in nature and society. Nature 435(7043), 814–818 (2005)CrossRefGoogle Scholar
  23. 23.
    M. Pelikan, K. Sastry, D.E. Goldberg, Multiobjective estimation of distribution algorithms, in Scalable Optimization via Probabilistic Modeling, (Springer, Berlin, 2006), pp. 223–248Google Scholar
  24. 24.
    E. Ravasz, A.-L. Barabási, Hierarchical organization in complex networks. Phys. Rev. E 67(2), 026112 (2003)CrossRefzbMATHGoogle Scholar
  25. 25.
    F. Ren, M. Zhang, Bilateral single-issue negotiation model considering nonlinear utility and time constraint. Decis. Support Syst. 60, 29–38 (2014)CrossRefGoogle Scholar
  26. 26.
    Y. Sakurai, M. Yokoo, K. Kamei, An efficient approximate algorithm for winner determination in combinatorial auctions, in Proceedings of the 2nd ACM Conference on Electronic Commerce (ACM, 2000), pp. 30–37.Google Scholar
  27. 27.
    B. Schaller, New York citys congestion pricing experience and implications for road pricing acceptance in the united states. Transp. Policy 17(4), 266–273 (2010)CrossRefGoogle Scholar
  28. 28.
    S.H. Strogatz, Exploring complex networks. Nature 410(6825), 268–276 (2001)CrossRefGoogle Scholar
  29. 29.
    P. Surynek, An optimization variant of multi-robot path planning is intractable, in Proceedings of the AAAI (2010)Google Scholar
  30. 30.
    P. Van Mieghem, H. Wang, X. Ge, S. Tang, F. Kuipers, Influence of assortativity and degree-preserving rewiring on the spectra of networks. Eur. Phys. J. B 76(4), 643–652 (2010)CrossRefzbMATHGoogle Scholar
  31. 31.
    M. Vega, Aplicacin de teora de grafos a redes con elementos autnomos. Master’s thesis, University of Alcala, Spain (2014). (In Spanish)Google Scholar
  32. 32.
    P. Vytelingum, S.D. Ramchurn, T.D. Voice, A. Rogers, N.R. Jennings, Trading agents for the smart electricity grid, in Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems, vol. 1 (International Foundation for Autonomous Agents and Multiagent Systems, 2010), pp. 897–904Google Scholar
  33. 33.
    H. Wang, S. Liao, L. Liao, Modeling constraint-based negotiating agents. Decis. Support Syst. 33(2), 201–217 (2002)CrossRefGoogle Scholar
  34. 34.
    H. Wiener, Structural determination of paraffin boiling points. J. Am. Chem. Soc. 69(1), 17–20 (1947)CrossRefGoogle Scholar
  35. 35.
    M. Xia, J. Stallaert, A.B. Whinston, Solving the combinatorial double auction problem. Eur. J. Oper. Res. 164(1), 239–251 (2005)CrossRefzbMATHGoogle Scholar
  36. 36.
    X. Zhang, R.M. Podorozhny, V.R. Lesser, Cooperative, multistep negotiation over a multi-dimensional utility function, Artificial Intelligence and Soft Computing (Springer, Berlin, 2000), pp. 136–142Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ivan Marsa-Maestre
    • 1
    Email author
  • Catholijn M. Jonker
    • 2
  • Mark Klein
    • 3
  • Enrique de la Hoz
    • 1
  1. 1.University of AlcalaMadridSpain
  2. 2.Technical University of DelftDelftThe Netherlands
  3. 3.Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations