Advertisement

Geometric and Numerical Aspects of Redundancy

  • Pierre-Brice Wieber
  • Adrien Escande
  • Dimitar Dimitrov
  • Alexander Sherikov
Chapter
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 117)

Abstract

If some resources of a robot are redundant with respect to a given objective, they can be used to address other, additional objectives. Since the amount of resources required to realize a given objective can vary, depending on the situation, this gives rise to a limited form of decision making, when assigning resources to different objectives according to the situation. Such decision making emerges in case of conflicts between objectives, and these conflicts appear to be situations of linear dependency and, ultimately, singularity of the solutions. Using an elementary model of a mobile manipulator robot with two degrees of freedom, we show how standard resolution schemes behave unexpectedly and inefficiently in such situations. We propose then as a remedy to introduce carefully tuned artificial conflicts, in the form of a trust region.

Keywords

Humanoid Robot Jacobian Matrice Weighted Approach Newton Step Regularization Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S. Chiaverini, G. Oriolo, I.D. Walker, Kinematically redundant manipulators, in Springer Handbook of Robotics, ed. By B. Siciliano, O. Khatib, Ch. 11 (Springer, Berlin, Heidelberg, 2008), pp. 245–265Google Scholar
  2. 2.
    O. Kanoun, F. Lamiraux, P.-B. Wieber, Kinematic control of redundant manipulators: generalizing the task-priority framework to inequality task. IEEE Trans. Robot. 27(4), 785–792 (2011)CrossRefGoogle Scholar
  3. 3.
    A. Sherikov, D. Dimitrov, P.-B. Wieber, Balancing a humanoid robot with a prioritized contact force distribution, in IEEE-RAS International Conference on Humanoid Robots (2015), pp. 223–228Google Scholar
  4. 4.
    N. Bohórquez, A. Sherikov, D. Dimitrov, P.-B. Wieber, Safe navigation strategies for a biped robot walking in a crowd, in IEEE-RAS International Conference on Humanoid Robots (2016)Google Scholar
  5. 5.
    S. Al Homsi, A. Sherikov, D. Dimitrov, P.-B. Wieber, A hierarchical approach to minimum-time control of industrial robots, in IEEE/RSJ International Conference on Robotics and Automation (2016)Google Scholar
  6. 6.
    B. Faverjon, P. Tournassoud, A local based approach for path planning of manipulators with a high number of degrees of freedom, in IEEE/RSJ International Conference on Robotics and Automation (1987), pp. 1152–1159Google Scholar
  7. 7.
    Y. Nakamura, H. Hanafusa, T. Yoshikawa, Task-priority based redundancy control of robot manipulators. Int. J. Robot. Res. 6(2), 3–15 (1987)CrossRefGoogle Scholar
  8. 8.
    B. Siciliano, J.J.E. Slotine, A general framework for managing multiple tasks in highly redundant robotic systems, in International Conference on Advanced Robotics (1991), pp. 1211–1216Google Scholar
  9. 9.
    A. Escande, N. Mansard, P.-B. Wieber, Hierarchical quadratic programming: fast online humanoid-robot motion generation. Int. J. Robot. Res. 33(7), 1006–1028 (2014)CrossRefGoogle Scholar
  10. 10.
    A. Del Prete, F. Nori, G. Metta, L. Natale, Prioritized motionforce control of constrained fully-actuated robots: “task space inverse dynamics”. Robot. Auton. Syst. 63(1), 150–157 (2015)CrossRefGoogle Scholar
  11. 11.
    A.A. Maciejewski, C.A. Klein, Task-priority based redundancy control of robot manipulators. Int. J. Robot. Res. 4(3), 109–116 (1985)CrossRefGoogle Scholar
  12. 12.
    T. Sugihara, Robust solution of prioritized inverse kinematics based on Hestenes-Powell multiplier method, in IEEE/RSJ International Conference on Intelligent Robots and System (2014), pp. 510–515Google Scholar
  13. 13.
    J. Nocedal, S. Wright, Numerical optimization, 2nd edn. (Springer, 2006)Google Scholar
  14. 14.
    F.M. Bianchi, G. Gualandi, Handling and prioritizing inequality constraints in redundancy resolution optimization-based approach with task priority, Master’s thesis, Sapienza University of Rome, 2011Google Scholar
  15. 15.
    Y. Nakamura, H. Hanafusa, Inverse kinematic solutions with singularity robustness for robot manipulator control. ASME J. Dyn. Syst. Meas. Control 108(3), 163–171 (1986)CrossRefzbMATHGoogle Scholar
  16. 16.
    F. Flacco, A. De Luca, O. Khatib, Control of redundant robots under hard joint constraints: saturation in the null space. IEEE Trans. Robot. 31(3), 637–654 (2015)CrossRefGoogle Scholar
  17. 17.
    D. Dimitrov, A. Sherikov, P.-B. Wieber, Efficient resolution of potentially conflicting linear constraints in robotics (2015)Google Scholar
  18. 18.
    N. Gould, S. Leyffer, P. Toint, A multidimensional filter algorithm for nonlinear equations and nonlinear least squares. SIAM J. Optim. 15(1), 17–38 (2004)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Pierre-Brice Wieber
    • 1
  • Adrien Escande
    • 2
  • Dimitar Dimitrov
    • 1
  • Alexander Sherikov
    • 1
  1. 1.INRIA Grenoble Rhône-AlpesMontbonnot-Saint-MartinFrance
  2. 2.CNRS-AIST Joint Robotics Laboratory UMI3218/RLTsukubaJapan

Personalised recommendations