Advertisement

Decoding the Neural Mechanisms Underlying Locomotion Using Mathematical Models and Bio-inspired Robots: From Lamprey to Human Locomotion

  • Auke Jan IjspeertEmail author
Chapter
Part of the Springer Proceedings in Advanced Robotics book series (SPAR, volume 2)

Abstract

The ability to efficiently move in complex environments is a fundamental property both for animals and for robots, and the problem of locomotion and movement control is an area in which neuroscience and robotics can fruitfully interact. Animal locomotion control is in a large part based on spinal cord circuits that combine reflex loops and central pattern generators (CPGs), i.e. neural networks capable of producing complex rhythmic or discrete patterns while being activated and modulated by relatively simple control signals. These networks located in the spinal cord for vertebrate animals are modulated by descending control signals and interact with the musculoskeletal system for generating rich motor behaviors. This paper presents how numerical models and robots can be used to explore the interplay of these four components (CPGs, reflexes, descending modulation, and musculoskeletal system). Going from lamprey to human locomotion, a series of models are presented that tend to show that the respective roles of these components have changed during evolution with a dominant role of CPGs in lamprey and salamander locomotion, and a more important role for sensory feedback and descending modulation in human locomotion. Interesting properties for robot locomotion control are also discussed.

Notes

Acknowledgements

Swiss National Science Foundation (project CR23I2_140714), the Swiss National Center of Competence in Research in Robotics, the European Commission (projects Walkman FP7-ICT 611832, Symbitron FP7-ICT 661626, and Cogimon H2020 ICT-23-2014 644727), and the Envirobot project funded by the Swiss NanoTera program.

References

  1. 1.
    Ijspeert, A.J.: Biorobotics: using robots to emulate and investigate agile locomotion. Science 346(6206), 196–203 (2014)Google Scholar
  2. 2.
    Floreano, D., Ijspeert, A.J., Schaal, S.: Robotics and neuroscience. Curr. Biol. 24(18), R910–R920 (2014)CrossRefGoogle Scholar
  3. 3.
    Iida, F., Ijspeert, A.J.: Biologically inspired robotics. Handbook of Robotics. Springer. In pressGoogle Scholar
  4. 4.
    Grillner, S.: The motor infrastructure: from ion channels to neuronal networks. Nat. Rev. Neurosci. 4(7), 573–586 (2003)CrossRefGoogle Scholar
  5. 5.
    Grillner, S., Deliagina, T., El Manira, A., Hill, R.H., Orlovsky, G.N., Wallén, P., Ekeberg, Ö., Lansner, A.: Neural networks that co-ordinate locomotion and body orientation in lamprey. Trends Neurosci. 18(6), 270–279 (1995)CrossRefGoogle Scholar
  6. 6.
    Ijspeert, A.J.: Central pattern generators for locomotion control in animals and robots: a review. Neural Netw. 21(4), 642–653 (2008)CrossRefGoogle Scholar
  7. 7.
    Stefanini, C., Orofino, S., Manfredi, L., Mintchev, S., Marrazza, S., Assaf, T., Capantini, L., Sinibaldi, E., Grillner, S., Wallén, P., Dario, P.: A novel autonomous, bioinspired swimming robot developed by neuroscientists and bioengineers. Bioinspir. Biomim. 7(2), 025001 (2012)CrossRefGoogle Scholar
  8. 8.
    Wilbur, C., Vorus, W., Cao, Y., Currie, S.: A lamprey-based undulatory vehicle. Neurotechnology for Biomimetic Robots. MIT Press, Cambridge (2002)Google Scholar
  9. 9.
    Leftwich, M.C., Tytell, E.D., Cohen, A.H., Smits, A.J.: Wake structures behind a swimming robotic lamprey with a passively flexible tail. J. Exp. Biol. 215(3), 416–425 (2012)CrossRefGoogle Scholar
  10. 10.
    Crespi, A., Badertscher, A., Guignard, A., Ijspeert, A.J.: AmphiBot I: an amphibious snake-like robot. Robot. Auton. Syst. 50(4), 163–175 (2005)CrossRefGoogle Scholar
  11. 11.
    Crespi, A., Ijspeert, A.J.: Online optimization of swimming and crawling in an amphibious snake robot. IEEE Trans. Robot. 24(1), 75–87 (2008)CrossRefGoogle Scholar
  12. 12.
    Ekeberg, Ö., Grillner, S., Lansner, A.: The neural control of fish swimming studied through numerical simulations. Adapt. Behav. 3(4), 363–384 (1995)CrossRefGoogle Scholar
  13. 13.
    Ijspeert, A.J., Crespi, A., Ryczko, D., Cabelguen, J.-M.: From swimming to walking with a salamander robot driven by a spinal cord model. Science 315(5817), 1416–1420 (2007)CrossRefGoogle Scholar
  14. 14.
    Karakasiliotis, K., Schilling, N., Cabelguen, J.-M., Ijspeert, A.J.: Where are we in understanding salamander locomotion: biological and robotic perspectives on kinematics. Biol. Cybern. 107(5), 529–544 (2012)CrossRefGoogle Scholar
  15. 15.
    Chevallier, S., Jan Ijspeert, A., Ryczko, D., Nagy, F., Cabelguen, J.-M.: Organisation of the spinal central pattern generators for locomotion in the salamander: biology and modelling. Brain Res. Rev. 57(1), 147–161 (2008)CrossRefGoogle Scholar
  16. 16.
    Cabelguen, J.-M., Bourcier-Lucas, C., Dubuc, R.: Bimodal locomotion elicited by electrical stimulation of the midbrain in the salamander Notophthalmus viridescens. J. Neurosci. 23(6), 2434–2439 (2003)Google Scholar
  17. 17.
    Crespi, A., Karakasiliotis, K., Guignard, A., Ijspeert, A.J.: Salamandra robotica II: an amphibious robot to study salamander-like swimming and walking gaits. IEEE Trans. Robot. 29(2), 308–320 (2013)CrossRefGoogle Scholar
  18. 18.
    Ijspeert, A.J., Crespi, A., Cabelguen, J.-M.: Simulation and robotics studies of salamander locomotion. Neuroinformatics 3(3), 171–195 (2005)CrossRefGoogle Scholar
  19. 19.
    Whelan, P.J.: Control of locomotion in the decebrate cat. Prog. Neurobiol. 49, 481–515 (1996)CrossRefGoogle Scholar
  20. 20.
    Pearson, K.G.: Proprioceptive regulation of locomotion. Curr. Opin. Neurobiol. 5(6), 786–791 (1995)CrossRefGoogle Scholar
  21. 21.
    Frigon, A., Rossignol, S.: Experiments and models of sensorimotor interactions during locomotion. Biol. Cybern. 95(6), 607–627 (2006)CrossRefzbMATHGoogle Scholar
  22. 22.
    Ekeberg, Ö., Pearson, K.: Computer simulation of stepping in the hind legs of the cat: an examination of mechanisms regulating the stance-to-swing transition. J. Neurophysiol. 94, 4256–4268 (2005)CrossRefGoogle Scholar
  23. 23.
    Rybak, I.A., Stecina, L., Shevtsova, N.A., McCrea, D.A.: Modelling spinal circuitry involved in locomotor pattern generation: insights from the effects of afferent stimulation. J. Physiol. Lond. 577, 641–658 (2006)CrossRefGoogle Scholar
  24. 24.
    Fukuoka, Y., Kimura, H., Cohen, A.H.: Adaptive Dynamic Walking of a Quadruped Robot on Irregular Terrain Based on Biological Concepts. Int. J. Robot. Res. 3–4, 187–202 (2003)Google Scholar
  25. 25.
    Pearson, K.G.: Generating the walking gait: role of sensory feedback. In: D.G.S., Wiesendanger, M., Mori, S. (eds.) Progress in Brain Research, vol. 143, pp. 123–129. Elsevier, Amsterdam (2004)Google Scholar
  26. 26.
    Spröwitz, A., Tuleu, A., Vespignani, M., Ajallooeian, M., Badri, E., Ijspeert, A.J.: Towards dynamic trot gait locomotion: design, control, and experiments with cheetah-cub, a compliant quadruped robot. Int. J. Robot. Res. 32(8), 932–950 (2013)CrossRefGoogle Scholar
  27. 27.
    Pfeifer, R., Bongard, J., Grand, S.: How the Body Shapes the Way We Think: A New View of Intelligence. MIT press, Cambridge (2007)Google Scholar
  28. 28.
    Ajallooeian, M., Gay, S., Tuleu, A., Sprowitz, A., Ijspeert, A.: Modular control of limit cycle locomotion over unperceived rough terrain. Presented at the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2013)Google Scholar
  29. 29.
    Pratt, J., Chew, C.M., Torres, A., Dilworth, P., Pratt, G.: Virtual model control: an intuitive approach for bipedal locomotion. Int. J. Robot. Res. 20(2), 129–143 (2001)CrossRefGoogle Scholar
  30. 30.
    MacKay-Lyons, M.: Central pattern generation of locomotion: a review of the evidence. Phys. Ther. 82(1), 69–83 (2002)CrossRefGoogle Scholar
  31. 31.
    Taga, G., Yamaguchi, Y., Shimizu, H.: Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment. Biol. Cybern. 65(3), 147–159 (1991)CrossRefzbMATHGoogle Scholar
  32. 32.
    Geyer, H., Herr, H.: A muscle-reflex model that encodes principles of legged mechanics produces human walking dynamics and muscle activities. IEEE Trans. Neural Syst. Rehabil. Eng. 18(3), 263–273 (2010)CrossRefGoogle Scholar
  33. 33.
    Dzeladini, F., van den Kieboom, J., Ijspeert, A.: The contribution of a central pattern generator in a reflex-based neuromuscular model. Front. Hum. Neurosci. 8, 371 (2014)CrossRefGoogle Scholar
  34. 34.
    van der Noot, N., Ijspeert, A.J., Ronsse, R.: Biped gait controller for large speed variations, combining reflexes and a central pattern generator in a neuromuscular model. Presented at the IEEE International Conference on Robotics and Automation (ICRA 2015), Seattle, Washington, USA (2015)Google Scholar
  35. 35.
    Kuo, A.: The relative roles of feedforward and feedback in the control of rhythmic movements. Motor Control 6, 129–145 (2002)Google Scholar
  36. 36.
    Pfeifer, R., Lungarella, M., Iida, F.: Self-organization, embodiment, and biologically inspired robotics. Science 318(5853), 1088–1093 (2007)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Biorobotics Laboratory, EPFL - Ecole Polytechnique Fédérale de Lausanne EPFL-STI-IBILausanneSwitzerland

Personalised recommendations