Three-Dimensional Thermal Model of the Costa Rica-Nicaragua Subduction Zone

  • Juan Carlos RosasEmail author
  • Claire A. Currie
  • Jiangheng He
Part of the Pageoph Topical Volumes book series (PTV)


The thermal structure of a subduction zone controls many key processes, including subducting plate metamorphism and dehydration, the megathrust earthquake seismogenic zone and volcanic arc magmatism. Here, we present the first three-dimensional (3D), steady-state kinematic-dynamic thermal model for the Costa Rica-Nicaragua subduction zone. The model consists of the subducting Cocos plate, the overriding Caribbean Plate, and a viscous mantle wedge in which flow is driven by interactions with the downgoing slab. The Cocos plate geometry includes along-strike variations in slab dip, which induce along-strike flow in the mantle wedge. Along-strike flow occurs primarily below Costa Rica, with a maximum magnitude of 4 cm/year (~40 % of the convergence rate) for a mantle with a dislocation creep rheology; an isoviscous mantle has lower velocities. Along-margin flow causes temperatures variations of up to 80 °C in the subducting slab and mantle wedge at the volcanic arc and backarc. The 3D effects do not strongly alter the shallow (<35 km) thermal structure of the subduction zone. The models predict that the megathrust seismogenic zone width decreases from ~100 km below Costa Rica to just a few kilometers below Nicaragua; the narrow width in the north is due to hydrothermal cooling of the oceanic plate. These results are in good agreement with previous 2D models and with the rupture area of recent earthquakes. In the models, along-strike mantle flow is induced only by variations in slab dip, with flow directed toward the south where the dip angle is smallest. In contrast, geochemical and seismic observations suggest a northward flow of 6–19 cm/year. We do not observe this in our models, suggesting that northward flow may be driven by additional factors, such as slab rollback or proximity to a slab edge (slab window). Such high velocities may significantly affect the thermal structure, especially at the southern end of the subduction zone. In this area, 3D models that include slab rollback and a slab edge are needed to investigate the mantle structure and dynamics.


Subduction zones thermal structure geodynamics numerical modeling Middle America Trench 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abers, G. A., Auger, L., Syracuse, E., Plank, T., Fischer, K. M., Rychert, C., Walker, A., Protti, J., Gonzalez Salas, V., Strauch, W., and Perez, P. (2004), Imaging the Subduction Factory Beneath Central America: The TUCAN Broadband Seismic Experiment. AGU Fall Meeting Abstracts.Google Scholar
  2. Abers, G. A., Plank, T., and Hacker, B. R. (2003), The wet Nicaraguan slab, Geophysical Research Letters. 30, 1–4.Google Scholar
  3. Abratis, M. and Worner, G. (2001), Ridge collision, slab-window formation, and the flux of Pacific asthenosphere into the Caribbean realm, Geology. 29, 127–130.CrossRefGoogle Scholar
  4. Audet, P. and Schwartz, S. Y. (2013), Hydrologic control of forearc strength and seismicity in the Costa Rican subduction zone, Nature Geoscience. 6, 852–855.CrossRefGoogle Scholar
  5. Barckhausen, U., Ranero, C. R., Huene, R., Cande, S. C., and Roeser, H. A. (2001), Revised tectonic boundaries in the Cocos plate off Costa Rica: implications for the segmentation of the convergent margin and for plate tectonic models, Journal of Geophysical Research: Solid Earth. 106, 19207–19220.CrossRefGoogle Scholar
  6. Batchelor, G. K. An introduction to fluid dynamics (Cambridge University, Cambridge, 2000).Google Scholar
  7. Bengtson, A. K. and van Keken, P. E. (2012), Three-dimensional thermal structure of subduction zones: effects of obliquity and curvature. Solid Earth. 3, 365–373.CrossRefGoogle Scholar
  8. Billen, M. I. (2008), Modeling the dynamics of subducting slabs. Annual Review of Earth and Planetary Sciences. 36, 325–356.CrossRefGoogle Scholar
  9. Bird, P. (2003), An updated digital model of plate boundaries. Geochemistry, Geophysics, Geosystems. 4. doi: 10.1029/2001GC000252.
  10. Carr, M. J., Feigenson, M. D., Patino, L. C., and Walker, J. A. (2004) Volcanism and geochemistry in Central America: progress and problems, In Inside the Subduction Factory (ed. Eiler. J.) (American Geophysical Union, Washignton D.C. 2004) pp. 153–174.Google Scholar
  11. Cloos, M. (1993), Lithospheric buoyancy and collisional orogenesis: subduction of oceanic plateaus, continental margins, island arcs, spreading ridges, and seamounts, Geological Society of America Bulletin. 105, 715–737.CrossRefGoogle Scholar
  12. Cozzens, B. D. and Spinelli, G. A. (2012), A wider seismogenic zone at Cascadia due to fluid circulation in subducting oceanic crust, Geology. 40, 899–902.CrossRefGoogle Scholar
  13. Currie, C., Wang, K., Hyndman, R. D., and He, J. (2004), The thermal effects of steady-state slab-driven mantle flow above a subducting plate: the Cascadia subduction zone and backarc, Earth and Planetary Science Letters. 223, 35–48.CrossRefGoogle Scholar
  14. Currie, C. A. and Hyndman, R. D. (2006), The thermal structure of subduction zone back arcs. Journal of Geophysical Research. 111. doi: 10.1029/2005JB004024.
  15. Davis, E. E., Wang, K., He, J., Chapman, D. S., Villinger, H., and Rosenberger, A. (1997), An unequivocal case for high Nusselt number hydrothermal convection in sediment-buried igneous oceanic crust, Earth and Planetary Science Letters. 146, 137–150.CrossRefGoogle Scholar
  16. DeMets, C. (2001), A new estimate for present-day Cocos-Caribbean plate motion: implications for slip along the Central American volcanic arc, Geophysical Research Letters. 28, 4043–4046.CrossRefGoogle Scholar
  17. DeShon, H. R., Schwartz, S. Y., Newman, A. V., Gonzalez, V., Protti, M., Dorman, L. M., Dixon, T. H., Sampson, D. E., and Flueh, E. R. (2006), Seismogenic zone structure beneath the Nicoya peninsula, Costa Rica, from three-dimensional local earthquake P- and S-wave tomography, Geophysical Journal International. 164:109–124.CrossRefGoogle Scholar
  18. Dinc, A. N., Rabbel, W., Flueh, E. R., and Taylor, W. (2011). Mantle wedge hydration in Nicaragua from local earthquake tomography, Geophysical Journal International. 186, 99–112.CrossRefGoogle Scholar
  19. Fisher, A. T., Stein, C. A., Harris, R. N., Wang, K., Silver, E. A., Pfender, M., Hutnak, M., Cherkaoui, A., Bodzin, R., and Villinger, H. (2003), Abrupt thermal transition reveals hydrothermal boundary and role of seamounts within the Cocos plate, Geophysical Research Letters. 30. doi: 10.1029/2002GL016766.
  20. Forsyth, D. and Uyeda, S. (1975), On the relative importance of the driving forces of plate motion, Geophysical Journal of the Royal Astronomical Society. 43, 163–200.CrossRefGoogle Scholar
  21. Hacker, B. R., Abers, G. A., and Peacock, S. M. (2003), Subduction factory 1. Theoretical mineralogy, densities, seismic wave speeds, and H2O contents, Journal of Geophysical Research. 108. doi: 10.1029/2001JB001127.
  22. Harris, R. N., Grevemeyer, I., Ranero, C. R., Villinger, H., Barckhausen, U., Henke, T., Mueller, C., and Neben, S. (2010a), Thermal regime of the Costa Rican convergent margin: 1. Along-strike variations in heat flow from probe measurements and estimated from bottom-simulating reflectors, Geochemistry, Geophysics, Geosystems. 11. doi: 10.1029/2010GC003272.Google Scholar
  23. Harris, R. N., Spinelli, G., Ranero, C., Grevemeyer, I., Villinger, H., and Barckhausen, U. (2010b), Thermal regime of the Costa Rican convergent margin: 2. Thermal models of the shallow Middle America subduction zone offshore Costa Rica, Geochemistry, Geophysics, Geosystems. 11. doi: 10.1029/2010GC003273.Google Scholar
  24. Harris, R. N. and Wang, K. (2002), Thermal models of the Middle America trench at the Nicoya peninsula, Costa Rica, Geophysical Research Letters. 29, 1–4.Google Scholar
  25. Herrstrom, E. A., Reagan, M. K., and Morris, J. D. (1995), Variations in lava composition associated with flow of asthenosphere beneath southern Central America, Geology. 23, 617–620.CrossRefGoogle Scholar
  26. Hoernle, K., Abt, D. L., Fischer, K. M., Nichols, H., Hauff, F., Abers, G. A., van den Bogaard, P., Heydolph, K., Alvarado, G., Protti, M., and Strauch, W. (2008), Arc-parallel flow in the mantle wedge beneath Costa Rica and Nicaragua, Nature. 451, 1094–1097.CrossRefGoogle Scholar
  27. Hutnak, M., Fisher, A. T., Harris, R., Stein, C., Wang, K., Spinelli, G., Schindler, M., Villinger, H., and Silver, E. (2008), Large heat and fluid fluxes driven through mid-plate outcrops on ocean crust, Nature Geoscience. 1, 611–614.CrossRefGoogle Scholar
  28. Hyndman, R.D., Yamano, M., Oleskevich, D.A. (1997), The seismogenic zone of subduction thrust faults, Island Arc. 6, 244–260.CrossRefGoogle Scholar
  29. Irifune, T. (1993), Phase transformations in the earth’s mantle and subducting slabs: implications for their compositions, seismic velocity and density structures and dynamics, Island Arc. 2, 55–71.CrossRefGoogle Scholar
  30. Johnston, S. T. and Thorkelson, D. J. (1997), Cocos-Nazca slab window beneath Central America, Earth and Planetary Science Letters. 146, 465–474.CrossRefGoogle Scholar
  31. Kanamori, H. and Kikuchi, M. (1993), The 1992 Nicaragua earthquake: a slow tsunami earthquake associated with subducted sediments, Nature. 361, 714–716.CrossRefGoogle Scholar
  32. Karato, S.-i. and Wu, P. (1993), Rheology of the upper mantle: a synthesis, Science. 260, 771–778.CrossRefGoogle Scholar
  33. Kikuchi, M. and Kanamori, H. (1995), Source characteristics of the 1992 Nicaragua tsunami earthquake inferred from teleseismic body waves, Pure and Applied Geophysics. 144, 441–453.CrossRefGoogle Scholar
  34. Kirby, S., Engdahl, R.E., Denlinger, R. (1996), Intermediate-depth intraslab earthquakes and arc volcanism as physical expressions of crustal and uppermost mantle metamorphism in subducting slabs, in Subduction Top to Bottom (ed. Bebout. G., Scholl. D., Kirby. S., Platt. J.) (American Geophysical Union, Washignton D.C 1996) pp. 195–214.CrossRefGoogle Scholar
  35. Kneller, E. A. and van Keken, P. E. (2008), Effect of three-dimensional slab geometry on deformation in the mantle wedge: implications for shear wave anisotropy, Geochemistry, Geophysics, Geosystems. 9. doi: 10.1029/2007GC001677.CrossRefGoogle Scholar
  36. Kyriakopoulos, C., Newman, A.V., Thomas, A.M., Moore-Driskell, M., Farmer, G.T. (2015), A new seismically constrained subduction interface model for Central America, Journal of Geophysical Research. 120, 5535–5548.Google Scholar
  37. Kummer, T. and Spinelli, G. A. (2008), Hydrothermal circulation in subducting crust reduces subduction zone temperatures, Geology. 36, 91–94.CrossRefGoogle Scholar
  38. Langseth, M. G. and Silver, E. A. (1996), The Nicoya convergent margin—a region of exceptionally low heat flow, Geophysical Research Letters. 23, 891–894.CrossRefGoogle Scholar
  39. Long, M. D. and Silver, P. G. (2008), The subduction zone flow field from seismic anisotropy: a global view, Science. 319, 315–8.CrossRefGoogle Scholar
  40. MacKenzie, L. S., Abers, G. A., Fischer, K. M., Syracuse, E. M., Protti-Quesada, J. M., González-Salas, V., and Strauch, W. (2008), Crustal structure along the southern Central American volcanic front, Geochemistry, Geophysics, Geosystems. 9. doi: 10.1029/2008GC001991.CrossRefGoogle Scholar
  41. Manea, Vlad C., Manea, M., Kostoglodov, V., Sewell, G. (2005), Thermo-mechanical model of the mantle wedge in Central Mexican subduction zone and a blob tracing approach for the magma transport, Physics of the Earth and Planetary Interiors. 149, 165–186.CrossRefGoogle Scholar
  42. Manea, Vlad C. and Gurnis, M. (2007), Subduction zone evolution and low viscosity wedges and channels, Earth and Planetary Science Letters. 264, 22–45.CrossRefGoogle Scholar
  43. Manea, M. and Manea, Vlad C. (2008), On the origin of El Chichón volcano and subduction of Tehuantepec Ridge: a geodynamical perspective, Journal of Volcanology and Geothermal Research. 175: 459–471.CrossRefGoogle Scholar
  44. Manea, Vlad C., Manea, M., Ferrari, L. (2013), A geodynamical perspective on the subduction of Cocos and Rivera plates beneath Mexico and Central America, Tectonophysics. 609, 56–81.CrossRefGoogle Scholar
  45. Newman, A. V., Schwartz, S. Y., Gonzalez, V., DeShon, H. R., Protti, J. M., and Dorman, L. M. (2002), Along-strike variability in the seismogenic zone below Nicoya peninsula, Costa Rica, Geophysical Research Letters. 29, 1–4.Google Scholar
  46. Patino, L. C., Michael, A., Carr, J., Mark, A., and Feigenson, D. (2000), Local and regional variations in Central American arc lavas controlled by variations in subducted sediment input, Contributions to Mineralogy and Petrology. 2000, 265–283.Google Scholar
  47. Peacock, S., van Keken, P., Holloway, S., Hacker, B., Abers, G. A., and Fergason, R. (2005), Thermal structure of the Costa Rica-Nicaragua subduction zone, Physics of the Earth and Planetary Interiors. 149, 187–200.CrossRefGoogle Scholar
  48. Peacock, S. M. (1996), Thermal and petrologic structure of subduction zones, in subduction top to bottom (ed. Bebout. G., Scholl. D., Kirby. S., Platt. J.) (American Geophysical Union, Washington D.C 1996) pp. 119–133.CrossRefGoogle Scholar
  49. Protti, M., Guendel, F., McNally, K. (1995), Correlation between the age of the subducting Cocos plate and the geometry of the Wadati–Benioff zone under Nicaragua and Costa Rica, Geological Society of America Special Papers. 295, 309–326.Google Scholar
  50. Protti, M., Gonzalez, V., Newman, A. V., Dixon, T. H., Schwartz, S. Y., Marshall, J. S., Feng, L., Walter, J. I., Malservisi, R., and Owen, S. E. (2014), Nicoya earthquake rupture anticipated by geodetic measurement of the locked plate interface, Nature Geoscience. 7, 117–121.CrossRefGoogle Scholar
  51. Rosas, J.C., Currie, C., Harris, R., He, J. (2015), Effect of hydrothermal circulation on slab dehydration for the subduction zone of Costa Rica and Nicaragua, Physics of the Earth and Planetary Interiors. Submitted.Google Scholar
  52. Rotman, H. M. M. and Spinelli, G. A. (2013), Global analysis of the effect of fluid flow on subduction zone temperatures, Geochemistry, Geophysics, Geosystems. 14, 3268–3281.Google Scholar
  53. Rychert, C. A., Fischer, K. M., Abers, G. A., Plank, T., Syracuse, E., Protti, J. M., Gonzalez, V., and Strauch, W. (2008), Strong along-arc variations in attenuation in the mantle wedge beneath Costa Rica and Nicaragua, Geochemistry, Geophysics, Geosystems. 9. doi: 10.1029/2008GC002040.CrossRefGoogle Scholar
  54. Rüpke, L., Morgan, J., Horth, M., Connolly, J. (2004), Serpentine and the subduction zone water cycle, Earth and Planetary Science Letters. 223, 17–34.CrossRefGoogle Scholar
  55. Schmidt, M. W. and Poli, S. (1998), Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation, Earth and Planetary Science Letters. 163, 361–379.CrossRefGoogle Scholar
  56. Schmidt, M. W. and Poli, S. (2003), Generation of mobile components during subduction of Oceanic Crust, in Treatise on Geochemistry (ed. Rudnick, R., Holland, H.D., Turekian, K.K.) (Elsevier, 1996) pp. 567–591.Google Scholar
  57. Schwartz, S. Y. and DeShon, H. R. (2007), Distinct geodetic and seismic up-dip limits to the northern Costa Rica seismogenic zone: evidence for two mechanical transitions, in The Seismogenic Zone of Subduction Thrust Faults (ed. Dixon. T., More. J.) (Columbia University Press, New York 2007) pp. 576–599.Google Scholar
  58. Soto, G. L., Ni, J. F., Grand, S. P., SandOvol, E., Valenzuela, R. W., Speziale, M. G., González, J. M. G., and Reyes, T. D. (2009), Mantle flow in the Rivera-Cocos subduction zone, Geophysical Journal International. 179, 1004–1012.CrossRefGoogle Scholar
  59. Stein, C. and Stein, S. (1992), A model for the global variation in oceanic depth and heat flow with lithospheric age, Nature. 359, 123–129.CrossRefGoogle Scholar
  60. Stern, R. J. (2002), Subduction zones, Reviews of Geophysics. 40, 1–38.Google Scholar
  61. Syracuse, E. M., Abers, G. A., Fischer, K., MacKenzie, L., Rychert, C., Protti, M., Gonzalez, V., and Strauch, W. (2008), Seismic tomography and earthquake locations in the Nicaraguan and Costa Rican upper mantle. Geochemistry, Geophysics, Geosystems. 9. doi: 10.1029/2008GC001963.CrossRefGoogle Scholar
  62. Syracuse, E. M. and Abers, G. A (2006), Global compilation of variations in slab depth beneath arc volcanoes and implications, Geochemistry, Geophysics, Geosystems. 7. doi: 10.1029/2005GC001045.CrossRefGoogle Scholar
  63. Turcotte, D. L. and Schubert, G., Geodynamics (Cambridge University Press, Cambridge, 2002).Google Scholar
  64. Van Avendonk, H. J. A., Holbrook, W. S., Lizarralde, D., and Denyer, P. (2011), Structure and serpentinization of the subducting Cocos plate offshore Nicaragua and Costa Rica, Geochemistry, Geophysics, Geosystems. 12. doi: 10.1029/2011GC003592.CrossRefGoogle Scholar
  65. van Keken, P. E., Currie, C., King, S. D., Behn, M. D., Cagnioncle, A., He, J., Katz, R. F., Lin, S.-C., Parmentier, E. M., Spiegelman, M., and Wang, K. (2008), A community benchmark for subduction zone modeling, Physics of the Earth and Planetary Interiors. 171, 187–197.CrossRefGoogle Scholar
  66. van Keken, P. E., Kiefer, B., and Peacock, S. M. (2002), High-resolution models of subduction zones: implications for mineral dehydration reactions and the transport of water into the deep mantle, Geochemistry, Geophysics, Geosystems. 3. doi: 10.1029/2001GC000256.CrossRefGoogle Scholar
  67. von Huene, R., Ranero, C.R., Weinrebe, W. (2000), Quaternary convergent margin tectonics of Costa Rica, segmentation of the Cocos plate, and Central American volcanism, Tectonics. 19-314-334.Google Scholar
  68. Wada, I. and Wang, K. (2009), Common depth of slab-mantle decoupling: reconciling diversity and uniformity of subduction zones, Geochemistry, Geophysics, Geosystems. 10. doi: 10.1029/2009GC002570.CrossRefGoogle Scholar
  69. Wada, I., Wang, K., He, J., and Hyndman, R. D. (2008), Weakening of the subduction interface and its effects on surface heat flow, slab dehydration, and mantle wedge serpentinization, Journal of Geophysical Research. 113. doi: 10.1029/2007JB005190.
  70. Wada, I., J. He, A. Hasegawa, and J. Nakajima (2015), Mantle wedge flow pattern and thermal structure in northeast Japan: effects of oblique subduction and 3-D slab geometry, Earth and Planetary Science Letters. 426, 76–88.CrossRefGoogle Scholar
  71. Wang, K., He, J., Schulzeck, F., Hyndman, R. D., and Riedel, M. (2015). Thermal condition of the 27 October 2012 Mw 7.8 Haida Gwaii subduction earthquake at the obliquely convergent Queen Charlotte margin, Bulletin of the Seismological Society of America. 115. doi: 10.1785/0120140183.CrossRefGoogle Scholar
  72. Yue, H., Lay, T., Schwartz, S. Y., Rivera, L., Protti, M., Dixon, T. H., Owen, S., and Newman, A. V. (2013), The 5 September 2012 Nicoya, Costa Rica Mw 7.6 earthquake rupture process from joint inversion of high-rate GPS, strong-motion, and teleseismic P-wave data and its relationship to adjacent plate boundary interface properties, Journal of Geophysical Research. 118, 5453–5466.Google Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  • Juan Carlos Rosas
    • 1
    Email author
  • Claire A. Currie
    • 1
  • Jiangheng He
    • 2
  1. 1.Department of PhysicsUniversity of AlbertaEdmontonCanada
  2. 2.Pacific Geoscience Centre, Geological Survey of CanadaSydneyCanada

Personalised recommendations