A Review on Forearc Ophiolite Obduction, Adakite-Like Generation, and Slab Window Development at the Chile Triple Junction Area: Uniformitarian Framework for Spreading-Ridge Subduction

  • Jacques BourgoisEmail author
  • Yves Lagabrielle
  • Hervé Martin
  • Jérôme Dyment
  • Jose Frutos
  • Maria Eugenia Cisternas
Part of the Pageoph Topical Volumes book series (PTV)


This paper aggregates the main basic data acquired along the Chile Triple Junction (CTJ) area (45°–48°S), where an active spreading center is presently subducting beneath the Andean continental margin. Updated sea-floor kinematics associated with a comprehensive review of geologic, geochemical, and geophysical data provide new constraints on the geodynamics of this puzzling area. We discuss: (1) the emplacement mode for the Pleistocene Taitao Ridge and the Pliocene Taitao Peninsula ophiolite bodies. (2) The occurrence of these ophiolitic complexes in association with five adakite-like plutonic and volcanic centers of similar ages at the same restricted locations. (3) The inferences from the co-occurrence of these sub-coeval rocks originating from the same subducting oceanic lithosphere evolving through drastically different temperature–pressure (PT) path: low-grade greenschist facies overprint and amphibolite-eclogite transition, respectively. (4) The evidences that document ridge-jump events and associated microplate individualization during subduction of the SCR1 and SCR-1 segments: the Chonos and Cabo Elena microplates, respectively. The ridge-jump process associated with the occurrence of several closely spaced transform faults entering subduction is controlling slab fragmentation, ophiolite emplacement, and adakite-like production and location in the CTJ area. Kinematic inconsistencies in the development of the Patagonia slab window document an 11- km westward jump for the SCR-1 spreading segment at ~6.5-to-6.8 Ma. The SCR-1 spreading center is relocated beneath the North Patagonia Icefield (NPI). We argue that the deep-seated difference in the dynamically sustained origin of the high reliefs of the North and South Patagonia Icefield (NPI and SPI) is asthenospheric convection and slab melting, respectively. The Chile Triple Junction area provides the basic constraints to define the basic signatures for spreading-ridge subduction beneath an Andean-type margin.


Chile Triple Junction spreading-ridge subduction forearc ophiolite granite adakite-like patagonia slab window 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anma, R., Orihashi, Y. (2013), Shallow-depth melt eduction due to ridge subduction: LA-ICPMS U-Pb igneous and detrital zircon ages from the Chile triple junction and the Taitao Peninsula, Chilean Patagonia, Geochemical Journal 47, 149–165.CrossRefGoogle Scholar
  2. Anma, R., Amstrong, R., Orihashi, Y., Ike, S., Shin, K-C., Kon, Y., Komiya, T., Ota, T., Kagashima, S., Shibuya, T., Yamamoto, S., Veloso, E.E., Fanning, M. Hervé, F. (2009), Are the Taitao granites formed due to subduction of the Chile ridge?, Lithos 113, 246–258.CrossRefGoogle Scholar
  3. Anma, R., Amstrong, R., Danhara, T., Orihashi, Y., Iwano, H. (2006), Zircon sensitive high mass-resolution ion probe U-Pb and fission-track ages for gabbros and sheeted dikes of the Taitao ophiolite, southern Chile, and their tectonic implications, Island Arc 15, 130–142.CrossRefGoogle Scholar
  4. Atwater, T. (1970), Implication of plate tectonics for the Cenozoic tectonic evolution of western North America, Geological Society of America Bulletin 81, 3513–3536.CrossRefGoogle Scholar
  5. Ballmer, M.D., van Hunen, J., Ito, G., Tackley, P.J., and Bianco, T.A. (2007), Non-hotspot volcano chains originating from small-scale sublithospheric convection, Geophys. Res. Lett. 34, L23310, doi: 10.1029/2007GL031636.CrossRefGoogle Scholar
  6. Bangs, N.L., Cande, S., Lewis, S.D., and Miller, J.J. (1992), Structural framework of the Chile Margin at the Chile ridge collision zone, Proceedings of the Ocean Drilling Program, Initial Report 141, 11–21.Google Scholar
  7. Behrmann, J.H., Lewis, S.D., Cande, S.C., and ODP 141 Scientific Party (1994), Tectonic and geology of spreading ridge subduction at the Chile triple junction. A synthesis of results from Leg 141 of the Ocean Drilling Program, Geologische Rundschau 83, 832–852.Google Scholar
  8. Behrmann, J.H., Lewis, S.D., and the Scientific Party, Proceedings of the Ocean Drilling Program. Initial Reports 141, 708 pp, Ocean Drilling Program, (College Station, Texas 1992).Google Scholar
  9. Blackman, D.K., Applegate, B., German, C.R., Thurber, A.R., Henig, A.S. (2012), Axial morphology along the Southern Chile rise, Marine Geology 315–318, 58–63.CrossRefGoogle Scholar
  10. Bourgois, J., Cisternas, M-E., Braucher, R., Bourlès, D., Frutos, J. (2016), Geomorphic records along the General Carrera (Chile)-Buenos Aires (Argentina) glacial lake (4648°S), climate inferences and glacial rebound for the past 79 ka, The Journal of Geology (accepted).Google Scholar
  11. Bourgois, J., and Michaud, F. (2002), Comparison between the Chile and Mexico triple junction areas substantiates slab window development beneath northwestern Mexico during the past 1210 Myr, Earth and Planetary Science Letters 201, 35–44.CrossRefGoogle Scholar
  12. Bourgois, J., Guivel, C., Lagabrielle, Y., Calmus, T., Boulègue, J., and Daux, V. (2000), Glacial-interglacial trench supply variation, spreading ridge subduction, and feedback controls on the Andean margin development at the Chile triple junction area (4548°S), Journal of Geophysical Research 105, 8355–8386.CrossRefGoogle Scholar
  13. Bourgois J., Martin H., Lagabrielle Y., Le Moigne J. and, Frutos Jara J. (1996), Subduction- erosion related to spreading-ridge subduction: Taitao peninsula (Chile margin triple junction area), Geology 24, 723–726.CrossRefGoogle Scholar
  14. Bourgois, J., Lagabrielle, Y., Le Moigne, J., Urbina, O., Janin, M. C., and Beuzart, P. (1993), Preliminary results of a field study of the Taitao ophiolite (southern Chile): Implications for the evolution of the Chile triple junction, Ofioliti 18, 113–129.Google Scholar
  15. Bourgois J., Lagabrielle Y., Maury, R., Lemoigne, J., Vidal P., Cantagrel J.M., Urbina O. (1992), Geology of the Taitao Peninsula (Chile Margin triple Junction area, 46°47°S): Miocene to Pleistocene obduction of the Bahia Barrientos ophiolite, EOS 73, 592.Google Scholar
  16. Breitsprecher, K., and Thorkelson, D.J. (2009), Neogene kinematic history of Nazca-Antarctic-Phoenix slab windows beneath Patagonia and the Antarctic Peninsula, Tectonophysics 464, 10–20.Google Scholar
  17. Cai, K., Sun, M., Yuan, C., Zhao, G., Xiao, W., Long, X., Wu, F. (2010), Geochronological and geochemical study of mafic dykes from the northwestern Chinese Altai: implications for petrogenesis and tectonic evolution, Gondwana Research 18, 638–652.CrossRefGoogle Scholar
  18. Cande, S.C., Leslie, R.B., Parra, J.C., and Hodbart, M. (1987), Interaction between the Chile ridge and Chile trench: geophysical and geothermal evidences, Journal of Geophysical Research, 92, 495–520.CrossRefGoogle Scholar
  19. Cande, S.C., and Leslie, R.B. (1986), Late Cenozoic tectonics of the southern Chile trench, Journal of Geophysical Research 91, 471–496.CrossRefGoogle Scholar
  20. Cande, S.C., Herron, E.M., Hall, B.R. (1982), The early Cenozoic tectonic history of the southeast Pacific, Earth and Planetary Science Letters 89, 63–74.CrossRefGoogle Scholar
  21. Chan, C.F., Tepper, J.H., and Nelson, B.K. (2012), Petrology of the Grays River volcanics, southwest Washington: Plume-influenced slab window magmatism in the Cascadia forearc, Geological Society of America Bulletin 124, 1324–1338, doi:  10.1130/B30576.1.CrossRefGoogle Scholar
  22. Chen, J.L., Wu, J.B., Xu, J.F., Dong, Y.H., Wang, B.D., Kang, Z.Q. (2013), Geochemistry of Eocene high-Mg# adakitic rocks in the northern Qiangtang terrane, central Tibet: implications for early uplift of the plateau, Geological Society of America Bulletin 125, 1800–1819, doi:  10.1130/B30755.1.CrossRefGoogle Scholar
  23. Cloos, M. (1993), Lithospheric buoyancy and collisional orogenesis: subduction of oceanic plateaus, continental margins, Island arcs, spreading ridges, and seamounts, Geological Society of America Bulletin, 105, 715–737.CrossRefGoogle Scholar
  24. Cole, R.B., Stewart, B.W. (2009), Continental margin volcanism at sites of spreading ridge subduction: examples from southern Alaska and western California, Tectonophysics 464, 118–136.CrossRefGoogle Scholar
  25. Defant, M., and Drummond, M.S. (1990), Derivation of some modern arc magmas by melting of young subducted lithosphere, Nature 347, 662–665.CrossRefGoogle Scholar
  26. DeLong, S.E., Schwarz, W.M., Anderson, R.N. (1979), Thermal effects of ridge subduction, Earth and Planetary Science Letters 44, 239–246.CrossRefGoogle Scholar
  27. DeLong, S.E., Fox, P.J., McDowell, F.W. (1978), Subduction of the Kula ridge at the Aleutian trench, Geological Society of America Bulletin 89, 83–95.CrossRefGoogle Scholar
  28. DeLong, S.E., and Fox, P.J. (1977), Geological consequences of ridge subduction, In Island arc, deep sea trenches, and back-arc basins, Maurice Ewing Ser., vol. 1 (ed. Talwani, M. and Pitman III, W.C.) (AGU Washington D.C.) pp. 221–228.Google Scholar
  29. DeMets. C., Gordon, R. G., Argus, D. F., and Stein, S. (1994), Effect of recent revisions to the geomagnetic reversal time scale on estimate of current plate motions, Geophysical Research Letters 21, 2191–2194.CrossRefGoogle Scholar
  30. Dickinson, W.R., Snyder, W.S. (1979), Geometry of subducted slabs related to San Andreas transform, Journal of Geology 87, 609–627.CrossRefGoogle Scholar
  31. Forsythe, R.D., Meen, J.K., Bender, J., and Elthon, D. (1995a), Geochemical data on volcanic rocks and glasses recovered from Site 86: implications for the origin of the Taitao ridge, Chile triple junction region, In Proceedings of the Ocean Drilling Program, Scientific Results 141 (eds. Lewis, S.D., Behrmann, J.H., Musgrave, R.J., and Cande, S.C.) (College Station, TX, 1995) pp. 331–348.Google Scholar
  32. Forsythe, R.D., Drake, R., and Olsson, R.K. (1995b), Data Report: 40Ar/39Ar and additional paleontologic age constraints, Site 862, Taitao ridge, In Proceedings of the Ocean Drilling Program, Scientific Results 141 (eds. Lewis, S.D., Behrmann, J.H., Musgrave, R.J., and Cande, S.C.) (College Station, TX, 1995) pp. 421–426.Google Scholar
  33. Forsythe, R. D., Nelson, E. P., Carr, M. J., Kaeding, M. E., Hervé, M., Mpodozis, C. M., Soffia, M. J., and Harambour, S. (1986), Pliocene near trench magmatism in southern Chile: a possible manifestation of ridge collision, Geology 14, 23–27.Google Scholar
  34. Forsythe, R.D., and Nelson, E.P. (1985a), Geological manifestations of ridge collision: evidence from the Golfo de Penas-Taitao Basin, southern Chile, Tectonics 4, 477–495.CrossRefGoogle Scholar
  35. Forsythe, R.D., Olson, R.K., Hosson, C., Nelson, E.P. (1985b), Stratigraphic and micropaleontologic observations from the Golfo de Penas-Taitao Basin, southern Chile. Revista Geológica de Chile 25–26, 3–12.Google Scholar
  36. Gorring, M.L., Kay, S.M., Zeitler, P.K., Ramos, V.A., Rubiolo, D., Fernandez, M.I., Panza, J.L. (1997), Neogene Patagonian plateau lavas: continental magmas associated with ridge collision at the Chile triple junction, Tectonics 16, 1–17.CrossRefGoogle Scholar
  37. Goss, A.R., and Kay, S.M. (2006), Steep REE patterns and enriched Pb isotopes in southern Central American arc magmas: evidence for forearc subduction-erosion?, Geochemistry, Geophysics, Geosystems 7, doi: 10.1029/2005GC00116.
  38. Guivel, C., Lagabrielle, Y., Bourgois, J., Martin, H., Arnaud, N., Fourcade, S., Cotten, J., Maury, R.C. (2003), Shallow melting of oceanic crust during spreading ridge subduction: origin of near-trench Quaternary volcanism at the Chile Triple Junction, Journal of Geophysical Research 108, 2345, doi: 10.1029/2002JB002119,2003.
  39. Guivel, C., Lagabrielle, Y., Bourgois, J., Maury, R.C., Fourcade, S., Martin, H., Arnaud, N. (1999), New geochemical constraints for the origin of ridge-subduction-related plutonic and volcanic suites from the Chile Triple Junction (Taitao Peninsula and Site 862, Leg ODP 141 on the Taitao Ridge), Tectonophysics 311, 83–111.CrossRefGoogle Scholar
  40. Guivel, C., Lagabrielle, Y., Bourgois, J., Maury, R.C., Martin, H., Arnaud, N., Cotten, J. (1996), Magmatic responses to active spreading ridge subduction: multiple magma sources in the Taitao peninsula region (46°–47°S, Chile Triple Junction), Third ISAG, St Malo (France), 575–578.Google Scholar
  41. Herron, E.M., Cande, S.G., Hall, B.R. (1981), An active spreading center collides with a subduction zone: a geophysical survey of the Chile margin triple junction, Memoir of the Geological Society of America 154, 683–701.Google Scholar
  42. Hervé, F., Fanning, M.C., Thomson, S.N., Pankhurst, R.J., Anma, R., Veloso, E.E., Herrera, C. (2003), SHRIMP U-Pb and FT Pliocene ages of near-trench granites in Taitao peninsula, southern Chile, Short Paper-IV, South American Symposium on Isotope Geology, 190–193.Google Scholar
  43. Hidalgo, S., Gerbe, M.C., Martin, H., Samaniego, P., and Bourdon, E. (2012), Role of crustal and slab components in the Northern Volcanic Zone of the Andes (Ecuador) constrained by Sr-Nd-O isotopes, Lithos 132–133, 180–192.CrossRefGoogle Scholar
  44. Hidalgo, S., Monzier, M., Martin, H., Chazot, G., Eissen, J.-P., and Cotten, J. (2007), Adakitic magmas in the Ecuadorian volcanic front: Petrogenesis of the Iliniza volcanic complex (Ecuador), Journal of Volcanology and Geothermal Research 159, 366–392.CrossRefGoogle Scholar
  45. Kaeding M., Forsythe R.D., and Nelson E. P. (1990), Geochemistry of the Taitao ophiolite and near-trench intrusions from the Chile margin triple junction, Journal of South American Earth Sciences 3, 161–177.CrossRefGoogle Scholar
  46. Kaislaniemi, L., van Hunen, J., Allen, M.B., Neill, I. (2014), Sublithospheric small-scale convection, a mechanism for collision zone magmatism, Geology 42, 291–294.Google Scholar
  47. Karsten, J. L., Klein, E. M., and Sherman, S. B. (1996), Subduction zone geochemical characteristics in ocean ridge basalts from the southern Chile Ridge: implications of modern ridge subduction systems for the Archean, Lithos 37, 143161.Google Scholar
  48. Kay, S.M., Ramos, V.A., and Marquez, M. (1993), Evidence in Cerro Pampa volcanic rocks for slab-melting prior to ridge-trench collision in southern South America, The journal of Geology 101, 703–714.CrossRefGoogle Scholar
  49. Klein, E.M., and Karsten, J.L. (1995), Ocean ridge basalts with convergent margin geochemical affinities from the southern Chile ridge, Nature 374, 52–57.CrossRefGoogle Scholar
  50. Kon, Y., Komiya, T., Anma, R., Hirata, T., Shibuya, T., Yamamoto, S., and Maruyama, S. (2013), Petrogenesis of the ridge subduction-related granitoids from the Taitao peninsula, Chile Triple Junction area, Geochemical Journal 47, 167–183.CrossRefGoogle Scholar
  51. Komiya, T., Yamamoto, S., Aoki, S., Sawaki, Y., Ishikawa, A., Tashiro, T., Koshida, K., Shimojo, M., Aoki, K., Collerson, K.D. (2015), Geology of the Eoarchean, >3.95 Ga, Nulliak supracrustal rocks in the Saglek Block, northern Labrador, Canada: the oldest geological evidence for plate tectonics, Tectonophysics, DOI:  10.1016/j.tecto.2015.05.003.CrossRefGoogle Scholar
  52. Kurnosov, V., Forsythe, R., Lindsley-Griffin, N., Zolotarev, B., Kashinzev, G., Eroshchev-Shak, V., Artamonov, A. and Chudaev, O. (1995), Comparison of the alteration and petrology of the Taitao ridge to the Taitao ophiolite, In Proceedings of the Ocean Drilling Program, Scientific Results 141 (eds. Lewis, S.D., Behrmann, J.H., Musgrave, R.J., and Cande, S.C.) (College Station, TX, 1995) pp. 349–360.Google Scholar
  53. Lagabrielle, Y., Bourgois, J., Dyment, J., Pelletier, B. (2015), Lower plate deformation at the Chile Triple Junction from the paleomagnetic record (45°30′ to 46°S), Tectonics 34, 1646–1660, doi: 10.1002/2014TC003773.CrossRefGoogle Scholar
  54. Lagabrielle, Y., Guivel, C., Maury, R., Bourgois, J., Fourcade, S., Martin, H. (2000), Magmatic-tectonic effects of high thermal regime at the site of active ridge subduction: the Chile triple junction model, Tectonophysics 326, 255–268.CrossRefGoogle Scholar
  55. Lagabrielle Y., Le Moigne J., Maury R.C., Cotten J., Bourgois J. (1994), Volcanic record of the subduction of an active spreading ridge, Taitao Peninsula (southern Chile), Geology 22, 515–518.CrossRefGoogle Scholar
  56. Le Moigne J., Lagabrielle Y., Whitechurch H., Girardeau J., Bourgois J. and Maury R. (1996), Petrology and geochemistry of the ophiolitic and volcanic suites of the Taitao peninsula (Chile triple junction area), Journal of South American Earth Sciences 9, 43–58.CrossRefGoogle Scholar
  57. Le Moigne, J., Lagabrielle, Y., Bourgois, J., Palvadeau, E. (1993), Ophiolites en contexte de dorsale en subduction: nouvelles données sur la péninsule de Taitao (sud Chili), Comptes Rendus de l’Académie des Sciences de Paris 317, 403–410.Google Scholar
  58. Leslie, R.B. (1986), Cenozoic tectonics of southern Chile: triple junction migration, ridge subduction, and forearc evolution [Ph.D. thesis]: New York, University of Colombia, 276 p.Google Scholar
  59. Ling, M.-X., Li, Y., Ding, X., Teng, F.-Z., Yang, X.-Y., Fan, W-M., Xu, Y.G., Sun, W. (2013), Destruction of the North China craton induced by ridge subduction, The Journal of Geology 121, 197–213, DOI:  10.1086/669248.CrossRefGoogle Scholar
  60. Liu, W, Liu, X.J., Xiao, W.J. (2012a), Massive granitoid production without massive continental crust growth in the Chinese Altay: insight into the source rock of granitoids using integrated zircon U-Pb age, Hf-Nd-Sr isotopes and geochemistry, American Journal of Science 312, 629–684, DOI:  10.2475/06.2012.02.CrossRefGoogle Scholar
  61. Liu, Y., Wang, X., Wang, D., He, D., Zong, K., Gao, C., Hu, Z., Gong, H. (2012b), Triassic high-Mg adakitic andesites from Linxi, inner Mongolia: insight into the fate of the Paleo-Asian ocean crust and fossil slab-derived melt-peridotite interaction, Chemical Geology, 328, 89–108.CrossRefGoogle Scholar
  62. Luhr, J.F., Nelson, S., Allan, J.F., and Carmichael I.S.E. (1985), Active rifting in south-western Mexico: manifestations of an incipient eastward spreading-ridge jump, Geology 13, 54–57.CrossRefGoogle Scholar
  63. Mao, Q., Xiao, W., Fang, T., Wang, J., Han, C., Sun, M., Yuan, C. (2012), Late Ordovician to Early Devonian adakites and Nb-enriched basalts in the Liuyuan area, Beishan, NW China: implications for early Paleozoic slab-melting and crustal growth in the southern Altaids, Gondwana Research 22, 534–553.CrossRefGoogle Scholar
  64. Martin, H. (1999), The adakitic magmas: modern analogues of Archaean granitoids, Lithos 46, 411–429.Google Scholar
  65. Martin, H. (1994), The Archean grey gneisses and the genesis of the continental crust, In archean crustal evolution (ed. Condie, X.E.) (Amsterdam, Netherlands, Elsevier), pp. 205–259.Google Scholar
  66. Martin, H. (1987), Archean and modern granitoids as indicators of changes in geodynamic processes, Revista Brasileira de Geociência 17, 360–365.Google Scholar
  67. Martin, H. (1986), Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas, Geology 14, 753–756.CrossRefGoogle Scholar
  68. Martin, H., Smithies, R.H., Rapp, R., Moyen, J.-F. and Champion, D. (2005), An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution, Lithos, 79, 1–24.CrossRefGoogle Scholar
  69. Martin, H. and Moyen, J.-F. (2002), Secular changes in TTG composition as markers of the progressive cooling of the Earth, Geology 30, 319–322.Google Scholar
  70. McCrory, P.A.; Wilson, D.S., Stanley, R.G. (2009), Continuing evolution of the Pacific-Juan de Fuca-North America slab window system—A Trench-ridge-transform example from the Pacific rim, Tectonophysics 464, 30–42.CrossRefGoogle Scholar
  71. Mordojovich, C. (1981), Sedimentary basins of Chilean Pacific offshore, In Energy Resources of the Pacific Region (ed. Halbouty, M.T.) (A.A.P.G. studies in Geology 12, Tulsa).Google Scholar
  72. Mpodozis, C.M., Hervé M.A., Nasi C., Forsythe R., and Nelson E. (1985), El Magmatismo Plioceno de Península Tres Montes y su relación con la evolución del Punto Triple de Chile Austral, Revista Geológica de Chile 25–26, 13–28.Google Scholar
  73. Moyen, J.-F. and Martin, H. (2012), Forty years of TTG research, Lithos 148, 312–336.CrossRefGoogle Scholar
  74. Nelson, E., Forsythe, R., Diemer. J., Allen, M., Urbina, O. (1993), Taitao ophiolite: a ridge collision ophiolite in the forearc of southern Chile (46°S), Revista Geológica de Chile 20, 137–166.Google Scholar
  75. Niu, Y., Zhao, Z., Zhu, D., Mo, X. (2013), Continental collision zones are primary sites for continental crust growth—A testable hypothesis, Earth Science Reviews, doi: 10.1016/j.earscirev.2013.09.004.CrossRefGoogle Scholar
  76. Prouteau, G., Scaillet, B., Pichavant, M. and Maury, R.C. (2001), Evidence for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust, Nature 410, 197–200.CrossRefGoogle Scholar
  77. Ramos, V.A., and Kay, S.M. (1992), Southern Patagonian plateau basalts and deformation: backarc testimony of ridge collisions, Tectonophysics 205, 261–282, doi:  10.1016/0040-1951(92) 90430-E.
  78. Rapp, R.P., Shimizu, N., Norman, M.D. and Applegate, G.S. (1999), Reaction between slab-derived melts and peridotite in the mantle wedge: Experimental constraints at 3.8 GPa, Chemical Geology 160, 335–356.Google Scholar
  79. Rohr, K.M.M., and Furlong, K.P. (1995), Ephemeral plate tectonics at the Queen Charlotte triple junction, Geology 23, 1035–1038.CrossRefGoogle Scholar
  80. Russo, R.M., VanDecar, J.C., Comte, D., Mocanu, V.I., Gallego, A., and Murdie, R.E. (2010a), Subduction of the Chile ridge: upper mantle structure and flow, Geological Society of America Today 20, 4–10, doi:  10.1130/GSATG61A.1.
  81. Russo, R.M., Gallego, A., Comte, D., Mocanu, V.I., Murdie, R.E., and VanDecar J.C. (2010b), Source-side shear wave splitting and upper mantle flow in the Chile Ridge subduction region, Geology 38, 707–710, doi:  10.1130/G30920.1.CrossRefGoogle Scholar
  82. Scharman, M.R., Pavlis, T.L., Ruppert, N. (2012), Crustal stabilization through the processes of ridge subduction: examples from the Chugach metamorphic complex, southern Alaska, Earth and Planetary Science Letters 329–330, 122–132.CrossRefGoogle Scholar
  83. Schiano, P., Monzier, M., Eissen, J-P., Martin, H. and Koga, K. (2010), Simple mixing as the major control of the evolution of volcanic suites in the Ecuadorian Andes, Contribution to Mineralogy and Petrology 160, 297–312.CrossRefGoogle Scholar
  84. Schmerr, N. (2012), The Gutenberg discontinuity: melt at the lithosphere-asthenosphere boundary, Science 335, 1480–1483.CrossRefGoogle Scholar
  85. Schulte, R.F., Schilling, M., Anma, R., Farquhar, J., Horan, M., Komiya, T., Piccoli, P.M., Pitcher, L., Walker, R. (2009), Chemical and chronologic complexity in the convecting upper mantle: evidence from the Taitao ophiolite, southern Chile, Geochimica et Cosmochismica Acta 73, 5793–5819.CrossRefGoogle Scholar
  86. Sherman, S. B., Karsten, J. L. and Klein, E. M. (1997), Petrogenesis of axial lavas from the southern Chile ridge: major element constraints, Journal of Geophysical Research 102(B7), 1496314990.CrossRefGoogle Scholar
  87. Shibuya, T., Komiya, T., Anma, R., Ota, T., Omori, S., Kon, Y., Yamamoto, S., Maruyama, S. (2007), Progressive metamorphism of the Taitao ophiolite; evidence for axial and off-axis hydrothermal alterations, Lithos 98, 233–260.CrossRefGoogle Scholar
  88. Sigmarsson, O., Martin, H., Knowles, J. (1998), Melting of a subducting oceanic crust in Austral Andean lavas from U-series disequilibria, Nature 394, 566–569.CrossRefGoogle Scholar
  89. Sisson, T.W., Ratajeski, K., Hankins,W.B., Glazner, A.F. (2005), Voluminous granitic magmas from common basaltic sources, Contributions to Mineralogy and Petrology 148, 635–661.CrossRefGoogle Scholar
  90. Sisson, V.B., Pavlis, T.L. (1993), Geological consequences of plate reorganization: an example from Eocene southern Alaska fore arc, Geology 21, 913–916.Google Scholar
  91. Stern, C.R. (2011), Subduction erosion: rates, mechanisms, and its role in arc magmatism and the evolution of the continental crust and mantle, Gondwana Research 20, 284–308.CrossRefGoogle Scholar
  92. Stern, C.R., and Scholl, D.W. (2010), Yin and yang of continental crust creation and destruction by plate tectonic processes, International Geology Review 52, 1–31.CrossRefGoogle Scholar
  93. Stern, C.R., Kilian, R. (1996), Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone, Contributions to Mineralogy and Petrology 123, 263–281.Google Scholar
  94. Stern, C.R., Futa, K., Muehlenbachs, K. (1984), Isotopic and trace element data for orogenic andesites from the austral Andes, In Andean Magmatism, Chemical and Isotopic Constraints (eds. Harmon R.S., Barreiro, B.A) (Shiva Geology Series. Nantwich), pp. 1–46.CrossRefGoogle Scholar
  95. Takagi, T. (2004), Origin of magnetic- and ilmenite-series granitic rocks in the Japan arc, American Journal of Science 304, 169–202.CrossRefGoogle Scholar
  96. Tang, G-J., Wyman, D.A., Wang, Q., Li, J., Li, Z-X., Zhao, Z-H., Sin, W-D. (2012), Asthenosphere-lithosphere interaction triggered by a slab window during ridge subduction: trace element and Sr-Nd-Hf-Os isotopic evidence from Late Carboniferous tholeiites in the western Junggar area (NW China), Earth and Planetary Science Letters 329–330, 84–96.CrossRefGoogle Scholar
  97. Tebbens, S.F., Cande, S.C., Kovacs, L., Parra, J.C., LaBrecque, J.L., and H. Vergara (1997), The Chile ridge: a tectonic Framework, Journal of Geophysical Research 102, 12,035–12059.CrossRefGoogle Scholar
  98. Thorkelson, D.J. (1996), Subduction of diverging plates and the principles of slab window formation, Tectonophysics 255, 47–63.CrossRefGoogle Scholar
  99. Thorkelson, D.J., Taylor, R.P. (1989), Cordilleran slab-windows, Geology 17, 833–838.CrossRefGoogle Scholar
  100. Weissel, J.K., Hayes, D.E., Herron, E.M. (1977), Plate tectonic synthesis: the displacements between Australia, New Zealand and Antarctica since Late Cretaceous, Marine Geology 25, 231–277.CrossRefGoogle Scholar
  101. Whitney, D.L., Teyssier, C., Rey, P., and Buck, R. (2013), Continental and es, Geological Society of Amererica Bulletin 125, 273–298; doi:  10.1130/B30754.1.CrossRefGoogle Scholar
  102. Yang, G., Li, Y., Gu, P., Yang, B., Tong, L., Zhang, H. (2012), Geochronological and geochemical study of the Darbut ophiolitic complex in the west Junggar (NW China): implications for petrogenesis and Tectonic evolution, Earth and Planetary Science Letters 21, 1037–1049.CrossRefGoogle Scholar
  103. Zamora, D. (2000), Fusion de la croûte océanique subductée: approche expérimentale et géochimique, Unpublished thesis, Blaise Pascal University, Clermont-Ferrand, France, 314 pp.Google Scholar
  104. Zhang, C., Ma, C., Holtz, F., Koepke, J., Wolff, P. E., Berndt, J. (2013), Mineralogical and geochemical constraints on contribution of magma mixing and fractional crystallization to high-Mg adakite-like diorites in eastern Dabie orogeny, East China, Lithos 172–173, 118–138.Google Scholar
  105. Zhang, Z., Zhao, G., Santosh, M., Wang, J. Dong, X., and Shen, K. (2010), Late Cretaceous charnockite with adakitic affinities from the Gangdese batholith southeastern Tibet: evidence for Neo-Tethyan mid-ocean ridge subduction, Gondwana Research 17, 615–631.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  • Jacques Bourgois
    • 1
    Email author
  • Yves Lagabrielle
    • 2
  • Hervé Martin
    • 3
  • Jérôme Dyment
    • 4
  • Jose Frutos
    • 5
  • Maria Eugenia Cisternas
    • 6
  1. 1.Institut des Sciences de la Terre Paris (iSTeP)Université Pierre et Marie Curie and Centre National de la Recherche ScientifiqueParis Cedex 05France
  2. 2.Observatoire des Sciences de l’Univers de Rennes, Geosciences Rennes, UMR 6118Rennes CedexFrance
  3. 3.Laboratoire Magmas et VolcansUniversité Blaise Pascal, CNRS-IRD-OPGCClermont-Ferrand CedexFrance
  4. 4.Géosciences MarinesInstitut de Physique du Globe (IPGP)Paris Cedex 05France
  5. 5.ProvidenciaChile
  6. 6.Instituto de Geologia Economica Aplicada (GEA)Universidad de ConcepcionConcepciónChile

Personalised recommendations