Advertisement

P-Wave Velocity Tomography from Local Earthquakes in Western Mexico

  • Juan A. Ochoa-Chávez
  • Christian R. Escudero
  • Francisco J. Núñez-Cornú
  • William L. Bandy
Chapter
Part of the Pageoph Topical Volumes book series (PTV)

Abstract

In western Mexico, the subduction of the Rivera and Cocos plates beneath the North America plate has deformed and fragmented the overriding plate, forming several structural rifts and crustal blocks. To obtain a reliable subsurface image of the continental crust and uppermost mantle in this complex area, we used P-wave arrivals of local earthquakes along with the Fast Marching Method tomography technique. We followed an inversion scheme consisting of (1) the use of a high-quality earthquake catalog and corrected phase picks, (2) the selection of earthquakes using a maximum location error threshold, (3) the estimation of an improved 1-D reference velocity model, and (4) the use of checkerboard testing to determine the optimum configuration of the velocity nodes and inversion parameters. Surprisingly, the tomography results show a very simple δVp distribution that can be described as being controlled by geologic structures formed during two stages of the separation of the Rivera and Cocos plates. The earlier period represents the initial stages of the separation of the Rivera and Cocos plates beneath western Mexico; the later period represents the more advanced stage of rifting where the Rivera and Cocos plates had separated sufficiently to allow melt to accumulate below the Colima Volcanic complex. During the earlier period (14 or 10–1.6 Ma), NE–SW-oriented structures/lineaments (such as the Southern Colima Rift) were formed as the two plates separated. During the second period (1.6 Ma to the present), the deformation is attributed to magma, generated within and above the tear zone between the Rivera and Cocos plates, rising beneath the region of the Colima Volcanic Complex. The rising magma fractured the overlying crust, forming a classic triple-rift junction geometry. This triple-rift system is confined to the mid- to lower crust perhaps indicating that this rifting process is still in an early stage. This fracturing, along with fluid circulation and associated heat advection within the fractures, can easily explain the observed distribution of δVp, as well as many of the results of previous seismological studies. Also surprisingly, we find no evidence at deep crustal depths to support either a trenchward migration of the volcanic arc or toroidal asthenospheric flow through the slab tears bounding the Jalisco Block to the NW and SE.

Keywords

Local tomography subduction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aki K., and Lee W.H.K. (1976), Determination of Three-Dimensional Velocity Anomalies Under a Seismic Array using First P Arrival Times from Local Earthquakes, J. Geophys. Res. 81, 4381–4399.CrossRefGoogle Scholar
  2. Alinaghi A., Koulakov I., and Thybo H. (2007), Seismic tomographic imaging of P- and S-waves velocity perturbations in the upper mantle beneath Iran, Geophysical Journal International 169:1089–1102, doi:  10.1111/j.1365-246X.2007.03317.x.CrossRefGoogle Scholar
  3. Allan J. F. (1986), Geology of the Northern Colima and Zacoalco Grabens, southwest Mexico: Late Cenozoic rifting in the Mexican Volcanic Belt, Geol. Soc. America Bull., 97:473–485, doi:  10.1130/0016-7606(1986).
  4. Allan, J.F., Nelson, S.A., Luhr, J.F., Carmichael, I.S.E., Wopat, M., and Wallace, P.J., Pliocene-recent rifting in SW Mexico and associated volcanism: an Exotic terrain in the making, in the Gulf and Peninsular Province of the California’s, AAPG Memoir 47, (ed. Dauphin J.P. and B.R.T. Simoneit) (AAPG, Tulsa, Ok. 1991) pp. 425-445.Google Scholar
  5. Andrews V., Stock J., Ramírez Vázquez C.A., and Reyes-Dávila G. (2011), Double-difference Relocation of the Aftershocks of the Tecomán, Colima, Mexico Earthquake of 22 January 2003, Pure Appl. Geophys. 168:1331–1338, doi:  10.1007/s00024-010-0203-0.CrossRefGoogle Scholar
  6. Bandy, W.L. (1992), Geological and Geophysical Investigation of the Rivera-Cocos Plate Boundary: Implications for Plate Fragmentation, Ph.D. Dissertation, Texas A&M University, College Station, pp. 195.Google Scholar
  7. Bandy W.L., Hilde T.W.C., and Yan C.Y. (2000), The Rivera-Cocos plate boundary: Implications for Rivera-Cocos relative motion and plate fragmentation, Geol. Soc. America Bull., 334:1–28.Google Scholar
  8. Bandy W.L., Kostoglodov V., Hurtado-Díaz, and Mena M. (1999), Structure of the southern Jalisco subduction zone, Mexico, as inferred from gravity and seismicity, Geofisica Internacional 38:127–136.Google Scholar
  9. Bandy W.L., Kostoglodov V., and Mortera-Gutiérrez C.A. (1998), Southwest migration of the instantaneous Rivera-Pacific Euler pole since 0.78 Ma., Geofisica Internacional, 37:153–169.Google Scholar
  10. Bandy W.L., Michaud F., Bourgois J., et al. (2005), Subsidence and strike-slip tectonism of the upper continental slope off Manzanillo, Mexico, Tectonophysics, 398:115–140, doi:  10.1016/j.tecto.2005.01.004.CrossRefGoogle Scholar
  11. Bandy W.L., Michaud F., Dyment J., et al. (2008), Multibeam bathymetry and sidescan imaging of the Rivera Transform–Moctezuma Spreading Segment junction, northern East Pacific Rise: New constraints on Rivera–Pacific relative plate motion, Tectonophysics, 454:70–85. doi:  10.1016/j.tecto.2008.04.013.CrossRefGoogle Scholar
  12. Bandy W.L., Michaud F., Mortera-Gutiérrez C.A., et al. (2011), The Mid-Rivera-Transform Discordance: Morphology and Tectonic Development, Pure Appl. Geophys., 168:1391–1413, doi:  10.1007/s00024-010-0208-8.CrossRefGoogle Scholar
  13. Bandy W.L., Mortera-Gutiérrez C.A., Jaime U.F., and Hilde T.W.C. (1995), The Subducted Rivera-Cocos Plate Boundary, Geophys. Res. Lett., 22:3075–3078.CrossRefGoogle Scholar
  14. Bandy, W.L., and Pardo, M. (1994), Statistical examination of the existence and relative motion of the Jalisco and southern Mexico blocks, Tectonics, 13, 755–768.CrossRefGoogle Scholar
  15. Bandy W.L., Urrutia-Fucugauchi J., McDowell F.W., and Morton-Bermea O. (2001), K-Ar ages of four mafic lavas from the Central Jalisco Volcanic Lineament: Supporting evidence for a NW migration of volcanism within the Jalisco block, western Mexico, Geofisica Internacional, 40:259–269.Google Scholar
  16. Bartolomé R., Dañobeitia J.J., Michaud F., Cordoba D., and Delgado-Argote L.A. (2011), Imaging the Seismic Crustal Structure of the Western Mexican Margin between 19°N and 21°N, Pure Appl. Geophys., 168:1373–1389, doi:  10.1007/s00024-010-0206-x.CrossRefGoogle Scholar
  17. Barrier, E., Bourgois, J., and Michaud, F., (1990), The active Jalisco triple junction rift system, C.R. Acad. Sciences Paris, Serie II, 310, 1513–1520.Google Scholar
  18. Bourgois, J., Renard V., Aubouin J., Bandy W., Barrier E., Calmus T., Carfantan J.C., Guerrero J., Mammerickx J., Mercier de Lepinay B., Michaud F., and Sosson M. (1988), Active fragmentation of the North American plate: Offshore boundary of the Jalisco block off Manzanillo, Comptes Rendues, Acadadémie des Sciences Paris, 307(Serie II), p. 1121–1130.Google Scholar
  19. Bourgois J., and Michaud F. (1991), Active fragmentation of the North America plate at the Mexican triple junction area off Manzanillo, Geo-Marine Letters, 11:59–65.CrossRefGoogle Scholar
  20. Burke K., and Dewey J.F. (1973), Plume-Generated Triple Junctions: Key Indicators in Applying Plate Tectonics to Old Rocks, The Journal of Geology, 81:406–433, doi:  10.2307/30070631.
  21. Calmus T., Aguillón-Robles A., Maury R.C., Bellon H., Benoit M., Cotton J., Bourgois J., and Micaud F. (2003), Spatial and temporal evolution of basalts and magnesian andesites (“‘bajaites’”) from Baja California, Mexico: the role of slab melts, Lithos, 66:77–105.CrossRefGoogle Scholar
  22. Calmus T., Pallares C., Maury R.C., Aguillón-Robles A., Bellon H., Benoit M., and Micaud F. (2011), Volcanic Markers of the Post-Subduction Evolution of Baja California and Sonora, Mexico: Slab Tearing Versus Lithospheric Rupture of the Gulf of California, Pure Appl. Geophys., 168:1303–1330, doi:  10.1007/s00024-010-0204-z.CrossRefGoogle Scholar
  23. Corbo-Camargo F., Arzate-Flores J.A., Alvarez-Bejar R., Aranda-Gomez J.J., and Yutsis V., (2013), Subduction of the Rivera plate beneath the Jalisco block as imaged by magnetotelluric data, Revista Mexicana de Ciencias Geologicas, 30:268–281.Google Scholar
  24. DeMets C., and Stein S. (1990), Present-day Kinematics of the Rivera Plate and Implications for Tectonics in Southwestern Mexico, J. Geophys. Res., 95:21931–21948.CrossRefGoogle Scholar
  25. DeMets C., and Traylen S. (2000), Motion of the Rivera plate since 10 Ma relative to the Pacific and North American plates and the mantle, Tectonophysics, 318:119–159, doi:  10.1016/S0040-1951(99)00309-1.CrossRefGoogle Scholar
  26. DeMets C., and Wilson D.S. (1997), Relative motions of the Pacific, Rivera, North American, and Cocos plates since 0.78 Ma., J. Geophys. Res., 102:2789–2806.CrossRefGoogle Scholar
  27. DeShon H.R., Schwartz S.Y., Newman A.V., et al (2006), Seismogenic zone structure beneath the Nicoya Peninsula, Costa Rica, from three-dimensional local earthquake P- and S-wave tomography, Geophysical Journal International, 164:109–124, doi:  10.1111/j.1365-246X.2005.02809.x.CrossRefGoogle Scholar
  28. Dougherty S.L., Clayton R.W., and Helmberger D.V. (2012), Seismic structure in central Mexico: Implications for fragmentation of the subducted Cocos plate, J. Geophys. Res., 117, B09316, doi:  10.1029/2012JB009528.
  29. Ferrari L. (2004), Slab detachment control on mafic volcanic pulse and mantle heterogeneity in central Mexico, Geol., 32, 77–5, doi:  10.1130/G19887.1.CrossRefGoogle Scholar
  30. Ferrari L. (1995), Miocene shearing along the northern boundary of the Jalisco block and the opening of the southern Gulf of California, Geol, 23, 751–5, doi:  10.1130/0091-7613(1995)023<0751:MSATNB>2.3.CO;2.CrossRefGoogle Scholar
  31. Ferrari L., Pasquarè G., Venegas Salgado S., et al. (1994), Regional tectonics of western Mexico and its implications for the northern boundary of the Jalisco block, Geofisica Internacional, 33, 139–151.Google Scholar
  32. Ferrari, L., Pasquare, G., Venegas-Salgado, S., and Romero-Rios, F., Geology of the western Mexican Volcanic Belt and adjacent Sierra Madre Occidental and Jalisco block, Cenozoic Tectonics and Volcanism of Mexico: Geological Society of America Special Paper 334 (ed. Delgado-Granados, H., Aguirre-Díaz, G., and Stock, J.M., eds)(Boulder, Colorado 2000) pp. 65–83.CrossRefGoogle Scholar
  33. Ferrari L., Petrone C.M., Francalanci L. (2001), Generation of oceanic-island basalt–type volcanism in the western Trans-Mexican volcanic belt by slab rollback, asthenosphere infiltration, and variable flux melting, Geol., 29, 507–510, doi:  10.1130/0091-7613(2001)029<0507:GOOIBT>2.0.CO;2.CrossRefGoogle Scholar
  34. Ferrari, L., and Rosas-Elguera, J., Late Miocene to Quaternary extensión at the northern boundary of the Jalisco block, western Mexico: The Tepic-Zacoalco rift revised, Cenozoic Tectonics and Volcanism of Mexico: Geological Society of America Special Paper 334 (ed. Delgado-Granados, H., Aguirre-Díaz, G., and Stock, J.M.) (Boulder, Colorado 1999) pp. 41–63.CrossRefGoogle Scholar
  35. Fitch T.J. (1972) Plate convergence, transcurrent faults, and internal deformation adjacent to southeast Asia and the western Pacific, J. Geophys. Res., 77, 4432–4460.CrossRefGoogle Scholar
  36. Foulger G.R., Julian B.R., Pitt A.M., and Hill D.P. (2003), Three-dimensional crustal structure of Long Valley caldera, California, and evidence for the migration of CO2 under Mammoth Mountain, J. Geophys. Res., 108, 2147, doi:  10.1029/2000JB000041.
  37. Frey H.M., Lange R.A., Hall C.M., et al. (2007), A Pliocene ignimbrite flare-up along the Tepic-Zacoalco rift: Evidence for the initial stages of rifting between the Jalisco block (Mexico) and North America, Geol. Soc. America Bull., 119, 49–64, doi:  10.1130/B25950.1.CrossRefGoogle Scholar
  38. Garduño, V., and Tibaldi, A. (1991), Kinematic evolution of the continental active triple junction of the western Mexican Volcanic Belt, Comptes Rendus de l´Acadámie des Sciences, Paris Serie II, 312, 135–142.Google Scholar
  39. Gómez-Teuna, A., Orozco-Esquivel, M. T., and Ferrari, L., Igneous petrogenesis of the Trans-Mexican Volcanic Belt, Geology of Mexico: Celebrating the Centenial of the Geological Society of Mexico, Geological Society of America Special Paper 422 (ed. Alaniz-Álvarez, S.A., and Nieto-Samaniego, Á.F., eds.) (Boulder, Colorado 2007) pp. 129–181.Google Scholar
  40. Graeber F.M., and Ash (1999), Three-dimensional models of P wave velocity and P-to-S velocity ratio in the southern central Andes by simultaneous inversion of local earthquake data, J. Geophys. Res., 104, 20237–20256.CrossRefGoogle Scholar
  41. Haslinger F., Kissling E., and Ansorge J., et al. (1999), 3D crustal structure from local earthquake tomography around the Gulf of Arta (Ionian region, NW Greece), Tectonophysics, 304, 201–218, doi:  10.1016/S0040-1951(98)00298-4.CrossRefGoogle Scholar
  42. Johnson, C.A., and Harrison, C.G.A. (1989), Tectonics and volcanism in western Mexico: A landsat thematic mapper perspective, Remote Sens. Environ., 28, 273–286.Google Scholar
  43. Kissling E. (1998), Geotomography with Local Earthquakes, Review of Geophysics, 26, 659–698.Google Scholar
  44. Kissling E., Ellsworth W.L., Eberhart-Phillips D., and Kradolfer U. (1994), Initial reference models in local earthquake tomography, J. Geophys. Res. 99, 19635–19646.CrossRefGoogle Scholar
  45. Klitgord, K.D., and Mammerickx, J. (1982), Northern East Pacific Rise: magnetic anomaly and bathymetric framework, J. Geophys. Res., 87, 6725–6750.CrossRefGoogle Scholar
  46. Kostoglodov V., and Bandy W.L. (1995), Seismotectonic constraints on the convergence rate between the Rivera and North American plates, J. Geophys. Res., 100, 17977–17989.CrossRefGoogle Scholar
  47. Koulakov I., Bindi D., Parolai S., et al. (2010), Distribution of Seismic Velocities and Attenuation in the Crust beneath the North Anatolian Fault (Turkey) from Local Earthquake Tomography, Bulletin of the Seismological Society of America, 100, 207–224, doi:  10.1785/0120090105.CrossRefGoogle Scholar
  48. Koulakov I., Bohm M., Asch G., et al. (2007), Pand Svelocity structure of the crust and the upper mantle beneath central Java from local tomography inversion, J. Geophys. Res., 112, B08310–19, doi:  10.1029/2006JB004712.
  49. Koulakov I., Kaban M.K., Tesauro M., and Cloetingh S. (2009), P- and S-velocity anomalies in the upper mantle beneath Europe from tomographic inversion of ISC data, Geophysical Journal International, 179, 345–366, doi:  10.1111/j.1365-246X.2009.04279.x.CrossRefGoogle Scholar
  50. Koulakov I, Sobolev S.V. (2006), A tomographic image of Indian lithosphere break-off beneath the Pamir-Hindukush region, Geophysical Journal International, 164, 425–440, doi:  10.1111/j.1365-246X.2005.02841.x.CrossRefGoogle Scholar
  51. Koulakov I., Sobolev S.V., Asch G. (2006), P- and S-velocity images of the lithosphere-asthenosphere system in the Central Andes from local-source tomographic inversion, Geophysical Journal International, 167, 106–126, doi:  10.1111/j.1365-246X.2006.02949.x.CrossRefGoogle Scholar
  52. Koulakov I.Y., Dobretsov N.L., Bushenkova N., Yakovlev A.V. (2011), Slab shape in subduction zones beneath the Kurile–Kamchatka and Aleutian arcs based on regional tomography results, Russian Geology and Geophysics, 52, 650–667.CrossRefGoogle Scholar
  53. León Soto G., Ni J.F., Grand S.P., et al. (2009), Mantle flow in the Rivera-Cocos subduction zone, Geophysical Journal International, 179, 1004–1012, doi:  10.1111/j.1365-246X.2009.04352.x.CrossRefGoogle Scholar
  54. Luhr J.F., Nelson S.A., Allan J.F., Carmichael I.S.E. (1985), Active rifting in southwestern Mexico: Manifestations of an incipient eastward spreading-ridge jump, Geol., 13, 54–57, doi:  10.1130/0091-7613(1985)13<54:ARISMM>2.0.CO;2.CrossRefGoogle Scholar
  55. Marquez-Azua B., and DeMets C. (2009), Deformation of Mexico from continuous GPS from 1993 to 2008, Geochem Geophys Geosyst, doi:  10.1029/2008GC002278.CrossRefGoogle Scholar
  56. Mammerickx, J., and Klitgord, K.D. (1982), Northern East Pacific Rise: Evolution from 25 m.y.B.P. to the present, Journal of Geophysical Research, 87, 6751–6759.Google Scholar
  57. Menard, H. W. (1978), Fragmentation of the Farallon plate by pivoting subduction, J. Geol., 86, 99–110.CrossRefGoogle Scholar
  58. Michaud F., Danobeitia J.J., Carbonell R., et al. (2000), New insights into the subducting oceanic crust in the Middle American trench off western Mexico (17–19°N), Tectonophysics, 318, 187–200.CrossRefGoogle Scholar
  59. Michaud, F., Quintero, O., Barrier, E., and Bourgois, J. (1991), The northern boundary of the Jalisco block (western Mexico): location and evolution from 13 Ma to present, Comptes Rendus de l´Acadámie des Sciences, Paris Serie II, 312, 1359–1365.Google Scholar
  60. Michaud, F., Quintero, O., Calmus, T., Bourgois, J., and Barrier, E. (1993), The Amatlan de cañas depression (western Mexico): Neogene distension in the northern part of the Jalisco block, Comptes Rendus de l´Acadámie des Sciences, Paris Serie II, 317, 251–258.Google Scholar
  61. Moore G., and Marone C. (1994), Basaltic volcanism and extension near the intersection of the Sierra Madre volcanic province and the Mexican Volcanic Belt, Geol. Soc. America Bull., 106, 383–394.Google Scholar
  62. Mooser, F. (1972), The Mexican Volcanic belt: Structure and Tectonics, Geofisica Internacional, 12, 55–70.Google Scholar
  63. Mooser, F., and Maldonado, M. (1961), Penecontemporaneous tectonics along the Mexican Pacific Coast, Geofísica Internacional, 1, 1–20.Google Scholar
  64. Nava A.F., García-Arthur R., Castro R.R., et al. (1999) S wave attenuation in the coastal region of Jalisco–Colima, Me. Physics of the Earth and Planetary Interiors, 115, 247–257.CrossRefGoogle Scholar
  65. Nixon G.T. (1982), The relationship between Quaternary volcanism in central Mexico and the seismicity and structure of subducted ocean lithosphere, Geol. Soc. America Bull., 93, 514–11, doi:  10.1130/0016-7606(1982)93<514:TRBQVI>2.0.CO;2.CrossRefGoogle Scholar
  66. Nuñez-Cornu F.J., Rutz Lopez M., Nava P.F.A., et al (2002), Characteristics of seismicity in the coast and north of Jalisco Block, Mexico, Physics of the Earth and Planetary Interiors, 132, 141–155.CrossRefGoogle Scholar
  67. Pardo M., and Suárez G. (1995), Shape of the subducted Rivera and Cocos plates in southern Mexico: Seismic and tectonic implications, J. Geophys. Res., 100, 12357–12373.CrossRefGoogle Scholar
  68. Paul A., Thouvenot F., Spallarossa D., et al. (2001), A three-dimensional crustal velocity model of the southwestern Alps from local earthquake tomography, J. Geophys. Res., 106, 19367–19389.CrossRefGoogle Scholar
  69. Rawlinson N, de Kool M, and Sambridge M (2006), Seismic wavefront tracking in 3D heterogeneous media: applications with multiple data classes, Explor. Geophys., 37, 322–330.CrossRefGoogle Scholar
  70. Rawlinson N., and Fishwick S. (2011), Seismic structure of the southeast Australian lithosphere from surface and body wave tomography, Tectonophysics, doi:  10.1016/j.tecto.2011.11.016.CrossRefGoogle Scholar
  71. Rawlinson N., Houseman G.A., and Collins C.D.N. (2001), Inversion of seismic refraction and wide-angle reflection traveltimes for three-dimensional layered crustal structure, Geophysical Journal International, 145, 381–400.CrossRefGoogle Scholar
  72. Rawlinson N., Houseman G.A., Collins C.D.N., and Drummond B.J. (2001), New evidence of Tasmania’s tectonic history from a novel seismic experiment, Geophys. Res. Lett. 28, 3337–3340.CrossRefGoogle Scholar
  73. Rawlinson N., and Kennett B.L.N. (2008), Teleseismic tomography of the upper mantle beneath the southern Lachlan Orogen, Australia, Physics of the Earth and Planetary Interiors, 167, 84–97, doi:  10.1016/j.pepi.2008.02.007.CrossRefGoogle Scholar
  74. Rawlinson N., and Kennett B.L.N. (2004), Rapid estimation of relative and absolute delay times across a network by adaptive stacking, Geophysical Journal International, 157, 332–340, doi:  10.1111/j.1365-246X.2004.02188.x.CrossRefGoogle Scholar
  75. Rawlinson N., Kennett B.L.N., and Heintz M. (2006), Insights into the structure of the upper mantle beneath the Murray basin from 3D teleseismic tomography, Australian Journal of Earth Sciences, 53, 595–604. Doi,  10.1080/08120090600686751.CrossRefGoogle Scholar
  76. Rawlinson N., Kennett B.L.N., Vanacore E., et al. (2011), The structure of the upper mantle beneath the Delamerian and Lachlan orogens from simultaneous inversion of multiple teleseismic datasets, Gondwana Research, 19, 788–799, doi:  10.1016/j.gr.2010.11.001.CrossRefGoogle Scholar
  77. Rawlinson N., Pozgay S., and Fishwick S. (2010), Seismic tomography: A window into deep Earth, Physics of the Earth and Planetary Interiors, 178, 101–135, doi:  10.1016/j.pepi.2009.10.002.CrossRefGoogle Scholar
  78. Rawlinson N., Reading A.M., and Kennett B.L.N. (2006), Lithospheric structure of Tasmania from a novel form of teleseismic tomography, J. Geophys. Res., doi:  10.1029/2005JB003803.CrossRefGoogle Scholar
  79. Rawlinson N., and Sambridge M. (2004), Multiple reflection and transmission phases in complex layered media using a multistage fast marching method, Geophysics, 69, 1338–1350, doi:  10.1190/1.1801950.CrossRefGoogle Scholar
  80. Rawlinson N., and Sambridge M. (2004), Wave front evolution in strongly heterogeneous layered media using the fast marching method, Geophysical Journal International, 156, 631–647, doi:  10.1111/j.1365-246X.2004.02153.x.CrossRefGoogle Scholar
  81. Rawlinson N., and Sambridge M. (2003), Seismic Traveltime tomography o fthe Crust and Lithosphere, Advances in Geophysics, 46, 81–197.Google Scholar
  82. Rawlinson N., and Sambridge M. (2003), Irregular interface parametrization in 3-D wide-angle seismic traveltime tomography, Geophysical Journal International, 155, 79–92.CrossRefGoogle Scholar
  83. Rawlinson N., and Sambridge M. (2005) The fast marching method: an effective tool for tomographic imaging and tracking multiple phases in complex layered media, Explor. Geophys., 36, 341–350.CrossRefGoogle Scholar
  84. Rawlinson N., and Urvoy M. (2006), Simultaneous inversion of active and passive source datasets for 3-D seismic structure with application to Tasmania, Geophys. Res. Lett., 33, L24313–5, doi:  10.1029/2006GL028105.
  85. Rosas-Elguera J., Alva-Valdivia L.M., Goguitchaichvili A., et al. (2003), Counterclockwise Rotation of the Michoacan Block: Implications for the Tectonics of Western Mexico, International Geology Review, 45, 814–826, doi:  10.2747/0020-6814.45.9.814.CrossRefGoogle Scholar
  86. Rosas-Elguera J., Ferrari L., Garduño-Monroy V.H., and Urrutia-Fucugauchi J. (1996), Continental boundaries of the Jalisco block and their influence in the Pliocene-Quaternary kinematics of western Mexico, Geol., 24, 921–924, doi:  10.1130/0091-7613(1996)024<0921:CBOTJB>2.3.CO;2.CrossRefGoogle Scholar
  87. Rosas-Elguera J., Ferrari L., Martinez M.L., and Urrutia-Fucugauchi J. (1997), Stratigraphy and Tectonics of the Guadalajara Region and Triple-Junction Area, Western Mexico, International Geology Review, 39, 125–140, doi:  10.1080/00206819709465263.CrossRefGoogle Scholar
  88. Rutz-López M., and Nuñez-Cornu F.J. (2004), Sismotectónica del Norte y Oeste del Bloque de Jalisco Usando Datos Sísmicos Regionales, Geofisica Internacional, 24, 2–13.Google Scholar
  89. Sallarès V., Dañobeitia J.J., and Flueh E.R. (2000), Seismic tomography with local earthquakes in Costa Rica, Tectonophysics, 329, 61–78.Google Scholar
  90. Sanchez J.J., and Nunez-Cornu F.J. (2009), Seismicity and Stress in a Tectonically Complex Region: The Rivera Fracture Zone, the Rivera-Cocos Boundary, and the Southwestern Jalisco Block, Mexico, Bulletin of the Seismological Society of America, 99, 2771–2783, doi:  10.1785/0120080350.CrossRefGoogle Scholar
  91. Selvans M.M., Stock J.M., DeMets C., et al. (2011), Constraints on Jalisco Block Motion and Tectonics of the Guadalajara Triple Junction from 1998–2001 Campaign GPS Data, Pure Appl. Geophys., 168, 1435–1447, doi:  10.1007/s00024-010-0201-2.CrossRefGoogle Scholar
  92. Serpa, L., Katz, C., and Skidmore, C. (1989), The southeastern boundary of the Jalisco block in west-central Mexico (abstract), EOS Trans, AGU, 43, 1319.Google Scholar
  93. Serrato-Díaz G.S., Bandy W.L., and Mortera Gutiérrez C.A. (2004), Active rifting and crustal thinning along the Rivera-Cocos plate boundary as inferred from Mantle Bouguer gravity anomalies, Geofisica Internacional, 43, 361–381.Google Scholar
  94. Spica, Z., Cruz-Atienza, V.M., Reyes-Alfaro, G., Legrand, D., and Iglesias, A. (2014), Crustal imaging of western Michoacán and the Jalisco block, Mexico, from Ambient Seismic Noise, Journal of Volcanology and Geothermal Research, 289, 193–201.CrossRefGoogle Scholar
  95. Steck L.K., Thurber C.H., Fehler M.C., et al. (1998), Crust an upper mantle P wave velocity structure beneath Valles caldera, New Mexico: Results from the Jemez teleseismic tomography experiment, J. Geophys. Res., 103, 24301–24320.CrossRefGoogle Scholar
  96. Stock J.M., and Lee J. (1994), Do microplates in subduction zones leave a geological record?, Tectonics, 13, 1472–1487.CrossRefGoogle Scholar
  97. Stoiber, R.E., and Carr, M.J., 1973, Quaternary volcanic and tectonic segmentation of central America, Bulletin of Volcanology, 37, 304–325.CrossRefGoogle Scholar
  98. Suhardja S.K., Grand S.P., Wilson D., et al. (2015), Crust and subduction zone structure of Southwestern Mexico, J. Geophys. Res., doi:  10.1002/2014JB011573.Google Scholar
  99. Thurber C.H. (2003), Seismic Tomography of the Lithosphere with Body Waves, Pure Appl. Geophys., 160, 717–737.CrossRefGoogle Scholar
  100. Thybo, H., Artemieva, I.M. (2013), Moho and magmatic underplating in continental lithosphere, Tectonophysics, 609, 605–619, Doi: 10.1016/j.tecto.2013.05.032.CrossRefGoogle Scholar
  101. Tryggvason A., Rögnvaldsson S.T., Flóvenz Ó. (2002), Three-dimensional imaging of the P- and S-wave velocity structure and earthquake locations beneath Southwest Iceland, Geophysical Journal International, 151, 848–866.CrossRefGoogle Scholar
  102. Vigouroux N., Wallace P.J., and Kent A.J.R. (2008), Volatiles in High-K Magmas from the western Trans-Mexican Volcanic Belt: Evidence for Fluid Fluxing and Extreme Enrichment of the Mantle Wedge by subduction processes, Journal of Petrology, 49, 1589–1618, doi: 10.1093/petrology/egn039.CrossRefGoogle Scholar
  103. Yang T., Grand S.P., Wilson D., et al. (2009), Seismic structure beneath the Rivera subduction zone from finite-frequency seismic tomography, J. Geophys. Res., doi:  10.1029/2008JB005830.
  104. Zelt C.A. (1999), Modelling strategies and model assessment for wide-angle seismic traveltime data, Geophysical Journal International, 139, 183–204.CrossRefGoogle Scholar
  105. Zelt C.A., Ellis R.M., Zelt B.C. (2006), Three-dimensional structure across the Tintina strike-slip fault, northern Canadian Cordillera, from seismic refraction and reflection tomography, Geophysical Journal International, 167, 1292–1308, doi:  10.1111/j.1365-246X.2006.03090.x.CrossRefGoogle Scholar
  106. Zhao D., Hasegawa A., Horiuchi S. (1992), Tomographic Imaging of P and S Wave Velocity Structure Beneath Northeastern Japan, J. Geophys. Res., 97, 19909–19928.CrossRefGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  • Juan A. Ochoa-Chávez
    • 1
  • Christian R. Escudero
    • 1
  • Francisco J. Núñez-Cornú
    • 1
  • William L. Bandy
    • 2
  1. 1.Centro de Sismología y Volcanología de Occidente (SisVOc)Universidad de Guadalajara-Centro Universitario de la CostaPuerto VallartaMexico
  2. 2.Dept. de Geomagnetismo y Exploración, Instituto de GeofísicaUniversidad Nacional Autónoma de MéxicoMexicoMexico

Personalised recommendations