Advertisement

Lateral Variations of Interplate Coupling along the Mexican Subduction Interface: Relationships with Long-Term Morphology and Fault Zone Mechanical Properties

  • Baptiste Rousset
  • Cécile Lasserre
  • Nadaya Cubas
  • Shannon Graham
  • Mathilde Radiguet
  • Charles DeMets
  • Anne Socquet
  • Michel Campillo
  • Vladimir Kostoglodov
  • Enrique Cabral-Cano
  • Nathalie Cotte
  • Andrea Walpersdorf
Chapter
Part of the Pageoph Topical Volumes book series (PTV)

Abstract

Although patterns of interseismic strain accumulation above subduction zones are now routinely characterised using geodetic measurements, their physical origin, persistency through time, and relationships to seismic hazard and long-term deformation are still debated. Here, we use GPS and morphological observations from southern Mexico to explore potential mechanical links between variations in inter-SSE (in between slow slip events) coupling along the Mexico subduction zone and the long-term topography of the coastal regions from Guerrero to Oaxaca. Inter-SSE coupling solutions for two different geometries of the subduction interface are derived from an inversion of continuous GPS time series corrected from slow slip events. They reveal strong along-strike variations in the shallow coupling (i.e. at depths down to 25 km), with high-coupling zones (coupling >0.7) alternating with low-coupling zones (coupling <0.3). Coupling below the continent is typically strong (>0.7) and transitions to uncoupled, steady slip at a relatively uniform \(\sim \)175-km inland from the trench. Along-strike variations in the coast-to-trench distances are strongly correlated with the GPS-derived forearc coupling variations. To explore a mechanical explanation for this correlation, we apply Coulomb wedge theory, constrained by local topographic, bathymetric, and subducting-slab slopes. Critical state areas, i.e. areas where the inner subduction wedge deforms, are spatially correlated with transitions at shallow depth between uncoupled and coupled areas of the subduction interface. Two end-member models are considered to explain the correlation between coast-to-trench distances and along-strike variations in the inter-SSE coupling. The first postulates that the inter-SSE elastic strain is partitioned between slip along the subduction interface and homogeneous plastic permanent deformation of the upper plate. In the second, permanent plastic deformation is postulated to depend on frictional transitions along the subduction plate interface. Based on the location and friction values of the critical state areas identified by our Coulomb wedge analysis, we parameterise frictional transitions in plastic-static models of deformation over several seismic cycles. This predicts strong shear dissipation above frictional transitions on the subduction interface. The comparison of modelled surface displacements over a critical zone at a frictional transition and over a stable area with no internal wedge deformation shows differences of long-term uplift consistent with the observed along-strike variations in the coast-to-trench distances. Our work favours a model in which frictional asperities partly control short-term inter-SSE coupling as measured by geodesy and in which those asperities persist through time.

Keywords

Middle America Trench global positioning system inter-SSE coupling critical taper theory plastic deformation coastal morphology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This study is supported by the French National Research Agency (Agence Nationale de la Recherche, ANR G-GAP RA0000C069) and the USA National Science Foundation (Grant EAR-1114174). The GPS network maintenance and data acquisition were supported by Mexicos PAPIIT IN102105, IN103808 CONACYT 84544 and PAPIIT IN110514 Grants and by the French spatial agency CNES (project TOSCA SSEMEX). Some graphics were made with the Global Mapping Tool (GMT) software. We thank François Renard and Jean-Philippe Avouac for stimulating discussions about this study and the two anonymous reviewers for their constructive criticism which we found very helpful to improve the manuscript.

Supplementary material

978-3-319-51529-8_14_MOESM1_ESM.pdf (1.7 mb)
Supplementary material 1 (PDF 1791 kb)

References

  1. Amante, C. and Eakins, B. W. (2009). ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis. US Department of Commerce, National Oceanic and Atmospheric Administration, National Environmental Satellite, Data, and Information Service, National Geophysical Data Center, Marine Geology and Geophysics Division.Google Scholar
  2. Astiz, L. and Kanamori, H. (1984). An earthquake doublet in ometepec, guerrero, mexico. Physics of the earth and planetary interiors, 34(1):24–45.CrossRefGoogle Scholar
  3. Béjar-Pizarro, M., Socquet, A., Armijo, R., Carrizo, D., Genrich, J., and Simons, M. (2013). Andean structural control on interseismic coupling in the north chile subduction zone. Nature Geoscience.Google Scholar
  4. Bekaert, D., Hooper, A., and Wright, T. (2015).A spatially-variable power-law tropospheric correction technique for insar data. Journal of Geophysical Research: Solid Earth.Google Scholar
  5. Bouchon, M. (1981).A simple method to calculate green’s functions for elastic layered media. Bulletin of the Seismological Society of America, 71(4):959–971.Google Scholar
  6. Bouchon, M. (2003).A review of the discrete wavenumber method. Pure and applied Geophysics, 160(3-4):445–465.CrossRefGoogle Scholar
  7. Brudzinski, M., Cabral-Cano, E., Correa-Mora, F., DeMets, C., and Márquez-Azúa, B. (2007). Slow slip transients along the oaxaca subduction segment from 1993 to 2007. Geophysical Journal International,171(2):523–538.CrossRefGoogle Scholar
  8. Brudzinski, M. R., Hinojosa-Prieto, H. R., Schlanser, K. M., Cabral-Cano, E., Arciniega-Ceballos, A., Diaz-Molina, O., and DeMets, C. (2010).Nonvolcanic tremor along the oaxaca segment of the middle america subduction zone. Journal of Geophysical Research,115(null):B00A23.Google Scholar
  9. Bürgmann, R., Kogan, M. G., Steblov, G. M., Hilley, G., Levin, V. E., and Apel, E. (2005).Interseismic coupling and asperity distribution along the kamchatka subduction zone. Journal of Geophysical Research: Solid Earth (1978-2012), 110(B7).Google Scholar
  10. Byerlee, J. (1978).Friction of rocks. Pure and applied Geophysics,116(4-5):615–626.CrossRefGoogle Scholar
  11. Cavalié, O., Pathier, E., Radiguet, M., Vergnolle, M., Cotte, N., Walpersdorf, A., Kostoglodov, V., and Cotton, F. (2013).Slow slip event in the mexican subduction zone: Evidence of shallower slip in the guerrero seismic gap for the 2006 event revealed by the joint inversion of insar and gps data. Earth and Planetary Science Letters,367:52–60.CrossRefGoogle Scholar
  12. Chandrasekharaiah, D. and Debnath, L. (1994). Continuum mechanics. Academic press New York.Google Scholar
  13. Chlieh, M., Avouac, J.-P., Sieh, K., Natawidjaja, D. H., and Galetzka, J. (2008).Heterogeneous coupling of the sumatran megathrust constrained by geodetic and paleogeodetic measurements. Journal of Geophysical Research: Solid Earth (1978–2012),113(B5).Google Scholar
  14. Chlieh, M., Mothes, P., Nocquet, J.-M., Jarrin, P., Charvis, P., Cisneros, D., Font, Y., Collot, J.-Y., Villegas-Lanza, J.-C., Rolandone, F., et al. (2014).Distribution of discrete seismic asperities and aseismic slip along the ecuadorian megathrust. Earth and Planetary Science Letters,400:292–301.CrossRefGoogle Scholar
  15. Chlieh, M., Perfettini, H., Tavera, H., Avouac, J.-P., Remy, D., Nocquet, J.-M., Rolandone, F., Bondoux, F., Gabalda, G., and Bonvalot, S. (2011). Interseismic coupling and seismic potential along the central andes subduction zone. Journal of Geophysical Research: Solid Earth (1978–2012),116(B12).Google Scholar
  16. Conin, M., Henry, P., Godard, V., and Bourlange, S. (2012).Splay fault slip in a subduction margin, a new model of evolution. Earth and Planetary Science Letters,341:170–175.Google Scholar
  17. Correa-Mora, F., DeMets, C., Cabral-Cano, E., Diaz-Molina, O., and Marquez-Azua, B. (2009).Transient deformation in southern mexico in 2006 and 2007: Evidence for distinct deep-slip patches beneath guerrero and oaxaca. Geochemistry, Geophysics, Geosystems,10(2).Google Scholar
  18. Correa-Mora, F., DeMets, C., Cabral-Cano, E., Marquez-Azua, B., and Diaz-Molina, O. (2008).Interplate coupling and transient slip along the subduction interface beneath oaxaca, mexico. Geophysical Journal International,175(1):269–290.CrossRefGoogle Scholar
  19. Cotte, N., Walpersdorf, A., Kostoglodov, V., Vergnolle, M., Santiago, J.-A., and Campillo, M. (2009).Anticipating the next large silent earthquake in mexico. Eos, Transactions American Geophysical Union,90(21):181–182.Google Scholar
  20. Coutant, O. (1989). Programme de simulation numerique axitra. Rapport LGIT.Google Scholar
  21. Cubas, N., Avouac, J., Leroy, Y., and Pons, A. (2013a).Low friction along the high slip patch of the 2011 mw 9.0 tohoku-oki earthquake required from the wedge structure and extensional splay faults. Geophysical Research Letters,40(16):4231–4237.CrossRefGoogle Scholar
  22. Cubas, N., Avouac, J.-P., Souloumiac, P., and Leroy, Y. (2013b). megathrust friction determined from mechanical analysis of the forearc in the maule earthquake area. Earth and Planetary Science Letters.Google Scholar
  23. Cubas, N., Lapusta, N., Avouac, J.-P., and Perfettini, H. (2015). Numerical modeling of long-term earthquake sequences on the ne japan megathrust: comparison with observations and implications for fault friction. Earth and Planetary Science Letters,419:187–198.CrossRefGoogle Scholar
  24. Dahlen, F. (1984).Noncohesive critical coulomb wedges: An exact solution. Journal of Geophysical Research: Solid Earth (1978–2012),89(B12):10125–10133.CrossRefGoogle Scholar
  25. Davis, D., Suppe, J., and Dahlen, F. (1983).Mechanics of fold-and-thrust belts and accretionary wedges. Journal of Geophysical Research: Solid Earth (1978–2012),88(B2):1153–1172.CrossRefGoogle Scholar
  26. DeMets, C., Gordon, R. G., and Argus, D. F. (2010).Geologically current plate motions. Geophysical Journal International,181(1):1–80.CrossRefGoogle Scholar
  27. Di Toro, G., Han, R., Hirose, T., De Paola, N., Nielsen, S., Mizoguchi, K., Ferri, F., Cocco, M., and Shimamoto, T. (2011).Fault lubrication during earthquakes. Nature,471(7339):494–498.CrossRefGoogle Scholar
  28. Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., et al. (2007).The shuttle radar topography mission. Reviews of geophysics,45(2).Google Scholar
  29. Franco, A., Lasserre, C., Lyon-Caen, H., Kostoglodov, V., Molina, E., Guzman-Speziale, M., Monterosso, D., Robles, V., Figueroa, C., Amaya, W., et al. (2012).Fault kinematics in northern central america and coupling along the subduction interface of the cocos plate, from gps data in chiapas (mexico), guatemala and el salvador. Geophysical Journal International,189(3):1223–1236.CrossRefGoogle Scholar
  30. Frank, W. B., Radiguet, M., Rousset, B., Shapiro, N. M., Husker, A. L., Kostoglodov, V., Cotte, N., and Campillo, M. (2015).Uncovering the geodetic signature of silent slip through repeating earthquakes. Geophysical Research Letters,42(8):2774–2779.Google Scholar
  31. Frank, W. B., Shapiro, N. M., Kostoglodov, V., Husker, A. L., Payero, J. S., Campillo, M., and Prieto, G. A. (2013).Low-frequency earthquakes in the mexican sweet 1 spot. Geophysical Research Letters.Google Scholar
  32. Fulton, P., Brodsky, E., Kano, Y., Mori, J., Chester, F., Ishikawa, T., Harris, R., Lin, W., Eguchi, N., Toczko, S., et al. (2013).Low coseismic friction on the tohoku-oki fault determined from temperature measurements. Science,342(6163):1214–1217.CrossRefGoogle Scholar
  33. Graham, S. E., DeMets, C., Cabral-Cano, E., Kostoglodov, V., Rousset, B., Walpersdorf, A., Cotte, N., Lasserre, C., McCaffrey, R., and Salazar-Tlaczani, L. (2015).Slow slip history for the mexico subduction zone: 2005 through 2011. Pure and Applied Geophysics.Google Scholar
  34. Graham, S. E., DeMets, C., Cabral-Cano, E., Kostoglodov, V., Walpersdorf, A., Cotte, N., Brudzinski, M., McCaffrey, R., and Salazar-Tlaczani, L. (2014a).Gps constraints on the 2011-2012 oaxaca slow slip event that preceded the 2012 march 20 ometepec earthquake, southern mexico. Geophysical Journal International, page ggu019.Google Scholar
  35. Graham, S. E., DeMets, C., Cabral-Cano, E., Kostoglodov, V., Walpersdorf, A., Cotte, N., Brudzinski, M., McCaffrey, R., and Salazar-Tlaczani, L. (2014b).Gps constraints on the mw= 7.5 ometepec earthquake sequence, southern mexico: coseismic and post-seismic deformation. Geophysical Journal International,199(1):200–218.CrossRefGoogle Scholar
  36. Hayes, G. P., Wald, D. J., and Johnson, R. L. (2012). Slab1. 0: A three-dimensional model of global subduction zone geometries. Journal of Geophysical Research: Solid Earth (1978–2012),117(B1).Google Scholar
  37. Hernandez, B., Shapiro, N., Singh, S., Pacheco, J., Cotton, F., Campillo, M., Iglesias, A., Cruz, V., Gómez, J., and Alcántara, L. (2001). Rupture history of september 30, 1999 intraplate earthquake of oaxaca, mexico (mw= 7.5) from inversion of strong-motion data. Geophysical research letters,28(2):363–366.Google Scholar
  38. Hu, Y. and Wang, K. (2008).Coseismic strengthening of the shallow portion of the subduction fault and its effects on wedge taper. Journal of Geophysical Research: Solid Earth (1978-2012),113(B12).Google Scholar
  39. Husker, A. L., Kostoglodov, V., Cruz-Atienza, V. M., Legrand, D., Shapiro, N. M., Payero, J. S., Campillo, M., and Huesca-Pérez, E. (2012).Temporal variations of non-volcanic tremor (nvt) locations in the mexican subduction zone: Finding the nvt sweet spot. Geochemistry, Geophysics, Geosystems,13(3).Google Scholar
  40. Kanda, R. V. and Simons, M. (2012).Practical implications of the geometrical sensitivity of elastic dislocation models for field geologic surveys. Tectonophysics.Google Scholar
  41. Kaneko, Y., Avouac, J.-P., and Lapusta, N. (2010).Towards inferring earthquake patterns from geodetic observations of interseismic coupling. Nature Geoscience,3(5):363–369.CrossRefGoogle Scholar
  42. Kim, Y., Miller, M. S., Pearce, F., and Clayton, R. W. (2012).Seismic imaging of the cocos plate subduction zone system in central mexico. Geochemistry, Geophysics, Geosystems,13(7).Google Scholar
  43. Kimura, G., Hina, S., Hamada, Y., Kameda, J., Tsuji, T., Kinoshita, M., and Yamaguchi, A. (2012).Runaway slip to the trench due to rupture of highly pressurized megathrust beneath the middle trench slope: the tsunamigenesis of the 2011 tohoku earthquake off the east coast of northern japan. Earth and Planetary Science Letters,339:32–45.CrossRefGoogle Scholar
  44. Konca, A. O., Avouac, J.-P., Sladen, A., Meltzner, A. J., Sieh, K., Fang, P., Li, Z., Galetzka, J., Genrich, J., Chlieh, M., et al. (2008). Partial rupture of a locked patch of the sumatra megathrust during the 2007 earthquake sequence. Nature,456(7222):631–635.CrossRefGoogle Scholar
  45. Kostoglodov, V., Bandy, W., Dominguez, J., and Mena, M. (1996).Gravity and seismicity over the guerrero seismic gap, mexico. Geophysical Research Letters, 23(23):3385–3388.CrossRefGoogle Scholar
  46. Kostoglodov, V., Husker, A., Shapiro, N. M., Payero, J. S., Campillo, M., Cotte, N., and Clayton, R. (2010). The 2006 slow slip event and nonvolcanic tremor in the mexican subduction zone. Geophysical Research Letters,37(24).CrossRefGoogle Scholar
  47. Lallemand, S. E., Schnürle, P., and Malavieille, J. (1994).Coulomb theory applied to accretionary and nonaccretionary wedges: Possible causes for tectonic erosion and/or frontal accretion. Journal of Geophysical Research: Solid Earth (1978–2012),99(B6):12033–12055.CrossRefGoogle Scholar
  48. Lapusta, N., Rice, J. R., Ben-Zion, Y., and Zheng, G. (2000).Elastodynamic analysis for slow tectonic loading with spontaneous rupture episodes on faults with rate-and state-dependent friction. Journal of Geophysical Research: Solid Earth (1978–2012),105(B10):23765–23789.CrossRefGoogle Scholar
  49. Le Pichon, X., Mazzotti, S., Henry, P., and Hashimoto, M. (1998).Deformation of the japanese islands and seismic coupling: an interpretation based on gsi permanent gps observations. Geophysical Journal International,134(2):501–514.CrossRefGoogle Scholar
  50. Lehner, F. (1986).Comments on ”noncohesive critical coulomb wedges: An exact solution” by fa dahlen. Journal of Geophysical Research: Solid Earth (1978–2012),91(B1):793–796.CrossRefGoogle Scholar
  51. Liu, Y. and Rice, J. R. (2007).Spontaneous and triggered aseismic deformation transients in a subduction fault model. Journal of Geophysical Research: Solid Earth (1978–2012),112(B9).Google Scholar
  52. López-Quiroz, P., Doin, M.-P., Tupin, F., Briole, P., and Nicolas, J.-M. (2009).Time series analysis of mexico city subsidence constrained by radar interferometry. Journal of Applied Geophysics,69(1):1–15.CrossRefGoogle Scholar
  53. Loveless, J. P. and Meade, B. J. (2011).Spatial correlation of interseismic coupling and coseismic rupture extent of the 2011 mw= 9.0 tohoku-oki earthquake. Geophysical Research Letters,38(17):L17306.CrossRefGoogle Scholar
  54. Lowry, A. R., Larson, K. M., Kostoglodov, V., and Bilham, R. (2001).Transient fault slip in guerrero, southern mexico. Geophysical Research Letters,28(19):3753–3756.CrossRefGoogle Scholar
  55. Maillot, B. and Leroy, Y. M. (2006). Kink-fold onset and development based on the maximum strength theorem. Journal of the Mechanics and Physics of Solids,54(10):2030–2059.CrossRefGoogle Scholar
  56. Marquez-Azua, B. and DeMets, C. (2009).Deformation of mexico from continuous gps from 1993 to 2008. Geochemistry, Geophysics, Geosystems,10(2).CrossRefGoogle Scholar
  57. Mazzotti, S., Le Pichon, X., Henry, P., and Miyazaki, S.-I. (2000).Full interseismic locking of the nankai and japan-west kurile subduction zones: An analysis of uniform elastic strain accumulation in japan constrained by permanent gps. Journal of Geophysical Research: Solid Earth (1978–2012),105(B6):13159–13177.CrossRefGoogle Scholar
  58. Melnick, D., Bookhagen, B., Strecker, M. R., and Echtler, H. P. (2009).Segmentation of megathrust rupture zones from fore-arc deformation patterns over hundreds to millions of years, arauco peninsula, chile. Journal of Geophysical Research: Solid Earth (1978–2012),114(B1).Google Scholar
  59. Metois, M., Socquet, A., and Vigny, C. (2012).Interseismic coupling, segmentation and mechanical behavior of the central chile subduction zone. Journal of Geophysical Research: Solid Earth (1978–2012),117(B3).Google Scholar
  60. Nocquet, J., Villegas-Lanza, J., Chlieh, M., Mothes, P., Rolandone, F., Jarrin, P., Cisneros, D., Alvarado, A., Audin, L., Bondoux, F., et al. (2014).Motion of continental slivers and creeping subduction in the northern andes. Nature Geoscience,7(4):287–291.CrossRefGoogle Scholar
  61. OptumGeo (2013). Optum computational engineering. http://www.optumce.com.Google Scholar
  62. Ortiz, M., Singh, S., Kostoglodov, V., and Pacheco, J. (2000).Source areas of the acapulco-san marcos, mexico earthquakes of 1962 (m 7.1; 7.0) and 1957 (m 7.7), as constrained by tsunami and uplift records. GEOFISICA INTERNACIONAL-MEXICO-,39(4):337–348.Google Scholar
  63. Pérez-Campos, X., Kim, Y., Husker, A., Davis, P. M., Clayton, R. W., Iglesias, A., Pacheco, J. F., Singh, S. K., Manea, V. C., and Gurnis, M. (2008).Horizontal subduction and truncation of the cocos plate beneath central mexico. Geophysical Research Letters,35(18).Google Scholar
  64. Radiguet, M., Cotton, F., Vergnolle, M., Campillo, M., Valette, B., Kostoglodov, V., and Cotte, N. (2011).Spatial and temporal evolution of a long term slow slip event: the 2006 guerrero slow slip event.Geophysical Journal International,184(2):816–828.CrossRefGoogle Scholar
  65. Radiguet, M., Cotton, F., Vergnolle, M., Campillo, M., Walpersdorf, A., Cotte, N., and Kostoglodov, V. (2012).Slow slip events and strain accumulation in the guerrero gap, mexico. Journal of Geophysical Research: Solid Earth (1978–2012), 117(B4).CrossRefGoogle Scholar
  66. Rice, J. R. (2006).Heating and weakening of faults during earthquake slip. Journal of Geophysical Research: Solid Earth (1978–2012),111(B5).Google Scholar
  67. Salençon, J. (2002). De l’élasto-Plasticité au Calcul à la Rupture. Editions Ecole Polytechnique.Google Scholar
  68. Savage, J. (1983).A dislocation model of strain accumulation and release at a subduction zone. Journal of Geophysical Research: Solid Earth (1978–2012),88(B6):4984–4996.CrossRefGoogle Scholar
  69. Singh, S. C., Hananto, N., Mukti, M., Robinson, D. P., Das, S., Chauhan, A., Carton, H., Gratacos, B., Midnet, S., Djajadihardja, Y., et al. (2011).Aseismic zone and earthquake segmentation associated with a deep subducted seamount in sumatra. Nature Geoscience,4(5):308–311.CrossRefGoogle Scholar
  70. Song, T.-R. A., Helmberger, D. V., Brudzinski, M. R., Clayton, R. W., Davis, P., Pérez-Campos, X., and Singh, S. K. (2009).Subducting slab ultra-slow velocity layer coincident with silent earthquakes in southern mexico. Science,324(5926):502–506.CrossRefGoogle Scholar
  71. Song, T.-R. A. and Simons, M. (2003). Large trench-parallel gravity variations predict seismogenic behavior in subduction zones. Science,301(5633):630–633.CrossRefGoogle Scholar
  72. Stewart, G. S., Chael, E. P., and McNally, K. C. (1981).The november 29, 1978, oaxaca, mexico, earthquake: A large simple event. Journal of Geophysical Research: Solid Earth (1978–2012), 86(B6):5053–5060.CrossRefGoogle Scholar
  73. Suárez, G. and Sánchez, O. (1996).Shallow depth of seismogenic coupling in southern mexico: Implications for the maximum size of earthquakes in the subduction zone. Physics of the earth and planetary interiors,93(1):53–61.CrossRefGoogle Scholar
  74. Tarantola, A. (2005). Inverse problem theory and methods for model parameter estimation. Society for Industrial & Applied.Google Scholar
  75. Ujiie, K., Tanaka, H., Saito, T., Tsutsumi, A., Mori, J. J., Kameda, J., Brodsky, E. E., Chester, F. M., Eguchi, N., Toczko, S., et al. (2013).Low coseismic shear stress on the tohoku-oki megathrust determined from laboratory experiments. Science,342(6163):1211–1214.CrossRefGoogle Scholar
  76. Vergnolle, M., Walpersdorf, A., Kostoglodov, V., Tregoning, P., Santiago, J., Cotte, N., and Franco, S. (2010).Slow slip events in mexico revised from the processing of 11 year gps observations. Journal of Geophysical Research: Solid Earth (1978–2012),115(B8).Google Scholar
  77. Walpersdorf, A., Cotte, N., Kostoglodov, V., Vergnolle, M., Radiguet, M., Santiago, J. A., and Campillo, M. (2011).Two successive slow slip events evidenced in 2009–2010 by a dense gps network in guerrero, mexico. Geophysical Research Letters,38(15).CrossRefGoogle Scholar
  78. Wells, R. E., Blakely, R. J., Sugiyama, Y., Scholl, D. W., and Dinterman, P. A. (2003).Basin-centered asperities in great subduction zone earthquakes: A link between slip, subsidence, and subduction erosion? Journal of Geophysical Research,108(B10):2507.Google Scholar

Copyright information

© Springer International Publishing 2015

Authors and Affiliations

  • Baptiste Rousset
    • 1
  • Cécile Lasserre
    • 1
  • Nadaya Cubas
    • 2
  • Shannon Graham
    • 3
  • Mathilde Radiguet
    • 1
  • Charles DeMets
    • 4
  • Anne Socquet
    • 1
  • Michel Campillo
    • 1
  • Vladimir Kostoglodov
    • 5
  • Enrique Cabral-Cano
    • 5
  • Nathalie Cotte
    • 1
  • Andrea Walpersdorf
    • 1
  1. 1.ISTerre, CNRSUniv. Grenoble AlpesGrenobleFrance
  2. 2.Institut des Sciences de la Terre de ParisPierre et Marie Curie UniversityParisFrance
  3. 3.Department of Earth and Planetary SciencesHarvard UniversityCambridgeUSA
  4. 4.Department of GeoscienceUniversity of Wisconsin-MadisonMadisonUSA
  5. 5.Instituto de GeofísicaUniversidad Nacional Autónoma de México, CUCoyoacanMexico

Personalised recommendations