Active Crustal Faults in the Forearc Region, Guerrero Sector of the Mexican Subduction Zone

  • Krzysztof Gaidzik
  • Maria Teresa Ramírez-HerreraEmail author
  • Vladimir Kostoglodov
Part of the Pageoph Topical Volumes book series (PTV)


This work explores the characteristics and the seismogenic potential of crustal faults on the overriding plate in an area of high seismic hazard associated with the occurrence of subduction earthquakes and shallow earthquakes of the overriding plate. We present the results of geomorphic, structural, and fault kinematic analyses conducted on the convergent margin between the Cocos plate and the forearc region of the overriding North American plate, within the Guerrero sector of the Mexican subduction zone. We aim to determine the active tectonic processes in the forearc region of the subduction zone, using the river network pattern, topography, and structural data. We suggest that in the studied forearc region, both strike-slip and normal crustal faults sub-parallel to the subduction zone show evidence of activity. The left-lateral offsets of the main stream courses of the largest river basins, GPS measurements, and obliquity of plate convergence along the Cocos subduction zone in the Guerrero sector suggest the activity of sub-latitudinal left-lateral strike-slip faults. Notably, the regional left-lateral strike-slip fault that offsets the Papagayo River near the town of La Venta named “La Venta Fault” shows evidence of recent activity, corroborated also by GPS measurements (4–5 mm/year of sinistral motion). Assuming that during a probable earthquake the whole mapped length of this fault would rupture, it would produce an event of maximum moment magnitude Mw = 7.7. Even though only a few focal mechanism solutions indicate a stress regime relevant for reactivation of these strike-slip structures, we hypothesize that these faults are active and suggest two probable explanations: (1) these faults are characterized by long recurrence period, i.e., beyond the instrumental record, or (2) they experience slow slip events and/or associated fault creep. The analysis of focal mechanism solutions of small magnitude earthquakes in the upper plate, for the period between 1995 and 2008, revealed that frequent normal faults, sub-parallel to the trench, could be reactivated in the current stress field related to the Cocos subduction. Moreover, these features could also be reactivated by subduction megathrust earthquakes.


Forearc deformation active tectonics Guerrero sector Middle America Subduction Zone river network pattern upper plate faults 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, J.G., Singh, S.K., Espindola, J.M., and Yamamoto J. (1989). Seismic strain release in the Mexican subduction thrust. Phys. Earth Planet. Inter. 58, 307–322.CrossRefGoogle Scholar
  2. Aron, F., Allmendinger, R.W., Cembrano, J., González, G., and Yáñez, G. (2013). Permanent fore-arc extension and seismic segmentation: Insights from the 2010 Maule earthquake, Chile. J. Geophys. Res. B: Solid Earth. 118(2), 724–739.Google Scholar
  3. Arriagada, C., Arancibia, G., Cembrano, J., Martínez, F., Carrizo, D., Van Sint Jan, M., Sáez, E., González, G., Rebolledo, S., Sepúlveda, S.A., Contreras-Reyes, E., Jensen, E., and Yañez, G. (2011). Nature and tectonic significance of co-seismic structures associated with the Mw 8.8 Maule earthquake, central-southern Chile forearc. J. Struct. Geol. 33 (5), 891–897.CrossRefGoogle Scholar
  4. Avé Lallemont, H.G., and Oldow, J.S. (2000). Active displacement partitioning and arc-parallel extension of the Aleutian volcanic arc based on Global Positioning System geodesy and kinematic analysis. Geology 28(8), 739–742.CrossRefGoogle Scholar
  5. Barckhausen, U., Ranero, C.R., von Huene, R., Cande, S.C., and Roeser, H.A. (2001). Revised tectonic boundaries in the Cocos Plate off Costa Rica: Implications for the segmentation of the convergent margin and for plate tectonic models. J. Geohys. Res. B. 106, 19207–19220, doi: 10.1029/2001JB000238.CrossRefGoogle Scholar
  6. Bartholow, J.M., 1989. Stream temperature investigations: field and analytic methods. Instream Flow Information Paper No. 13., U.S. Fish Wildl. Serv. Biol. Rep. 89 (17), 139 pp.Google Scholar
  7. Bekaert, D.P.S., Hooper, A., and Wright, T.J. (2015). Reassessing the 2006 Guerrero slow slip event, Mexico: implications for large earthquakes in the Guerrero Gap. Journal of Geophysical Research: Solid Earth, In Press.Google Scholar
  8. Berglar, K., Gaedicke, Ch., Franke, D., Ladage, S., Klingelhoefer, F., and Djajadihardja, Y.S. (2010). Structural evolution and strike-slip tectonics off north-western Sumatra. Tectonophysics 480(1–4), 119–132.CrossRefGoogle Scholar
  9. Bierman, P.R., and Montgomery, D.R., Key Concepts in Geomorphology (W. H. Freeman Publisher 2014).Google Scholar
  10. Burbank, D.W. (1992). Causes of recent Himalayan uplift deduced from deposited patterns in the Ganges basin. Nature 357, 680–682.CrossRefGoogle Scholar
  11. Burbank, D.W., and Anderson, R.S., Tectonic Geomorphology (Blackwell Scientific, Oxford 2001).Google Scholar
  12. Campa, M.F., and Coney, P.J. (1983). Tectono-stratigraphic terranes and mineral distributions in Mexico. Can. J. Earth Sci. 20, 1040–1051.CrossRefGoogle Scholar
  13. Campa Uranga, M.F., García Díaz, J.L., García, J.B., Torreblanca Castro, T. de J., Aguilera Martínez, M.A., and Martínez, A.V. (1998). Carta Geológico-Minera Chilpancingo E14-8, Guerrero, Oaxaca y Puebla. Servicio Geológico Mexicano and Universidad Autónoma de Guerrero, carta E14–8, scale 1:250,000.Google Scholar
  14. Carranza, E.R., Aguilera Martínez, M.A., and Martínez, A.V. (1999). Carta Geológico-Minera Zihuatanejo E14-7-10, Guerrero. Servicio Geológico Mexicano, carta E14–7-10, scale 1:250,000.Google Scholar
  15. Cáseres, D., Monterroso, D., and Tavakoli, B., 2005. Crustal deformation in northern Central America. Tectonophysics 404, 119–131.CrossRefGoogle Scholar
  16. Choy, G.L., and Kirby, S.H. (2004). Apparent stress, fault maturity and seismic hazard for normal-fault earthquakes at subduction zones. Geophys. J. Int. 159, 991–1012.CrossRefGoogle Scholar
  17. Cortés-Aranda, J., González, L.G., Rémy, D., and Martinod, J. (2015). Normal upper plate fault reactivation in northern Chile and the subduction earthquake cycle: From geological observations and static Coulomb Failure Stress Change (CFS). Tectonophysic. 639, 118–131, doi: 10.1016/j.tecto.2014.11.019.CrossRefGoogle Scholar
  18. Corti, G., Carminati, E., Mazzarini, F., and Oziel Garcia, M. (2005). Active strike-slip faulting in El Salvador, Central America. Geology 33 (12), 989–992.CrossRefGoogle Scholar
  19. Cruz López, D.E., Sánchez Andraca, H.R. and Bustos, O.L. (2000). Carta Geológico-Minera Acapulco E14-11, Guerrero y Oaxaca. Servicio Geológico Mexicano, carta E14–11, scale 1:250,000.Google Scholar
  20. Delouis, B., Philip, H., Dorbath, L., and Cisternas, A. (1998). Recent crustal deformation in the Antofagasta region (northern Chile) and the subduction process. Geophys. J. Int. 132, 302–338.CrossRefGoogle Scholar
  21. DeMets, C., 1992. Oblique convergance and defroamtion along the Kuril and Japan Trenches. J. Geophys Res. 97 (B12), 17,615–17,625.Google Scholar
  22. DeMets, C., Gordon, R. G., and Argus, D. F. (2010). Geologically current plate motions, Geophys. J. Int. 181 (1), 1–80, doi: 10.1111/j.1365-246X.2009.04491.x.CrossRefGoogle Scholar
  23. Demoulin, A. (1998). Testing the tectonic significance of some parameters of longitudinal river profiles: the case of the Ardenne (Belgium, NW Europe). Geomorphology 24, 189–208.Google Scholar
  24. Ducea, M.N., Gehrels, G.E., Shoemaker, S., Ruiz, J., and Valencia, V.A. (2004). Geologic evolution of the Xolapa Complex, southern Mexico: evidence from U–Pb zircon geochronology. Geol. Soc. Am. Bull. 116, 1016–1025.CrossRefGoogle Scholar
  25. Echtler, H.P., Glodny, J., Gräfe, K., Rosenau, M., Melnick, D., Seifert, W., and Vietor, T. (2003). Active tectonics controlled by inherited structures in the long-term stationary and non-plateau south–central Andes, EGU/AGU Joint Assembly, Nice, EAE03-A-10902.Google Scholar
  26. Elliott, A.J., Dolan, J.F., and Oglesby, D.D. (2009). Evidence from coseismic slip gradients for dynamic control on rupture propagation and arrest through stepovers. J. Geophys. Res.: Solid Earth, 114 (B2).Google Scholar
  27. Farías, M., Comte, D., Roecker, S., Carrizo, D., and Pardo, M. (2011). Crustal extensional faulting triggered by the 2010 Chilean earthquake: The Pichilemu Seismic Sequence. Tectonics. 30(6), TC6010, doi: 10.1029/2011TC002888.CrossRefGoogle Scholar
  28. Fernandez, M. (2009). Seismicity of the Pejibaye-Matina, Costa Rica, region: a strike-slip tectonic boundary? Geofis. Int. 48 (4), 351–364.Google Scholar
  29. Fitch, T.J. (1972). Plate convergence, transcurrent faults, and internal deformation adjacent to southeast Asia and the western Pacific, J. Geophys. Res. 77, 4432–4460.CrossRefGoogle Scholar
  30. Fossen, H., Structural Geology (Cambridge University Press, Cambridge, 2010).Google Scholar
  31. Gasparini, N.M., and Whipple, K.X. (2014). Diagnosing climatic and tectonic controls on topography: Eastern flank of the northern Bolivian Andes. Litosphere, doi: 10.1130/L322.1.CrossRefGoogle Scholar
  32. Gripp, A.E., and Gordon R.G. (2002). Young tracks of hotspots and current plate velocities. Geophys. J. Int. 150, 321–361.CrossRefGoogle Scholar
  33. Gutscher, M.-A., and Lallemand, S. (1999). Birth of a major strike-slip fault in SW Japan. Terra Nova 11, 203–209.CrossRefGoogle Scholar
  34. Haeussler, P. J., Schwartz, D. P., Dawson, T. E., Stenner, H. D., Lienkaemper, J. J., Sherrod, B., Cinti F.R., Montone P., Craw P.A., Crone A.J., and Personius, S. F. (2004). Surface rupture and slip distribution of the Denali and Totschunda faults in the 3 November 2002 M 7.9 earthquake, Alaska. B. Seismol. Soc. Am. 94 (6B), S23–S52.Google Scholar
  35. Harris, R.A., and Day, S.M. (1993). Dynamics of fault interaction: Parallel strike-slip faults. J. Geophys. Res. 98(B3), 4461–4472.CrossRefGoogle Scholar
  36. Harris, R.A., Archuleta, R.J., and Day, S.M. (1991). Fault steps and the dynamic rupture process: 2-D numerical simulations of a spontaneously propagating shear fracture. Geophys. Res. Let. 18(5), 893–896.CrossRefGoogle Scholar
  37. Herrmann, U., Nelson, B.K., and Ratschbacher, L. (1994). The origin of a terrane: U/Pb zircon geochronology and tectonic evolution of the Xolapa complex (southern Mexico): Tectonics 13, 455–474, doi: 10.1029/93TC02465.CrossRefGoogle Scholar
  38. Hernández-Santana, J.R., and Ortiz-Pérez, M.A. (2005). Análisis morfoestructural de las cuencas hidrográficas de los ríos Sabana y Papagayo (Tercio Medio-Inferior), Estado de Guerrero. Investigaciones Geográficas, Bol del Inst. de Geogr., UNAM 56, 7–25.Google Scholar
  39. Howard, A.D. (1967). Drainage analysis in geologic interpretation; a summation. AAPG Bull. 51, 2246–2259.Google Scholar
  40. Imanishi, K., Ando, R., and Kuwahara, Y. (2012). Unusual shallow normal-faulting earthquake sequence in compressional northeast Japan activated after the 2011 off the Pacific coast of Tohoku earthquake. Geophysical Research Letters, 39(9).CrossRefGoogle Scholar
  41. Ito, Y., Tsuji, T., Osada, Y., Kido, M., Inazu, D., Hayashi, Y., Tsushima, H., Hino, R., and Fujimoto, H. (2011). Frontal wedge deformation near the source region of the 2011 Tohoku-Oki earthquake. Geophys. Res. Lett. 38, L00G05, doi: 10.1029/2011GL048355.CrossRefGoogle Scholar
  42. Jackson, J., Norris, R., and Youngson, J. (1996). The structural evolution of active fault and fold systems in central Otago, New Zealand: evidence revealed by drainage patterns. J. Struct. Geol. 18, 217–234.CrossRefGoogle Scholar
  43. Jarrard, R. D. (1986). Terrane motion by strike-slip faulting of forearc slivers. Geology 14, 780–783.CrossRefGoogle Scholar
  44. Kato, A., Sakai, S. I., and Obara, K. (2011). A normal-faulting seismic sequence triggered by the 2011 off the Pacific coast of Tohoku Earthquake: Wholesale stress regime changes in the upper plate. Earth, planets and space, 63(7), 745–748.CrossRefGoogle Scholar
  45. Kimura, G. (1986). Oblique subduction and collision: Forearc tectonics of the Kuril arc. Geology 14, 404–407, doi: 10.1130/0091-7613(1986)14<404:OSACFT>2.0.CO;2.CrossRefGoogle Scholar
  46. Knuepfer, P.L.K. (1989). Implications of the characteristics of end-points of historical surface fault ruptures for the nature of fault segmentation. Fault Segmentation and Controls of Rupture Initiation and Termination, 89–315.Google Scholar
  47. Kostoglodov, V., and Ponce, L. (1994). Relationship between subduction and seismicity in the Mexican part of the Middle America trench. J. Geophys. Res. 99, 729–742, 1994.CrossRefGoogle Scholar
  48. Kostoglodov, V., Cotte, N., Walpersdorf, A., Husker, A., and Santiago, J.A. (2014). Mysterious SSE of the Guerrero land. in: Proceedings of the Annual Meeting of the Mexican Geophysical Union, 2–7 Novemeber, 2014, Puerto Vallarta, Mexico.Google Scholar
  49. Kostoglodov V., Husker A., Santiago J.A., Cruz-Atienza V.M., Cotte N., and Walpersdorf A. (2015). Three types of Slow Slip Events in Guerrero, Mexico. in: Tectonic Tremor and Silent Seismicity, International Workshop, 25–27 February, 2015, Mexico, Abstract Book, 14p.Google Scholar
  50. Kostoglodov, V., Singh S. K., Santiago J. A., Franco S. I., Larson K. M., Lowry A. R., and Bilham R. (2003). A large silent earthquake in the Guerrero seismic gap, Mexico. Geophys. Res. Lett., 30 (15), 1807, doi: 10.1029/2003GL017219.
  51. Kreemer, C., Holt W.E., and Haines A.J. (2003). An integrated global model of present-day plate motions and plate boundary deformation. Geophys. J. Int., 154, 8-34.CrossRefGoogle Scholar
  52. Lange, D., Rietbrock, A., Haberland, C., Bataille, K., Dahm, T., Tilmann, F., and Flüh, E. (2007). Seismicity and geometry of the south Chilean subduction zone (41.5°S–43.5°S): implications for controlling parameters. Geophys. Res. Lett. 34, L06311. doi: 10.1029/2006GL029190.
  53. Lange, D., Cembrano, J., Rietbrock, A., Haberland, C., Dahm, T., and Bataille, K. (2008). First seismic record for intra-arc strike-slip tectonics along the Liquiñe-Ofqui fault zone at the obliquely convergent plate margin of the southern Andes. Tectonophysics 455, 14–24.Google Scholar
  54. Li, C. (1993). Forearc Structures and Tectonics in the Southern Peru-Northern Chile Continental Margin. Mar. Geophys. Res. 17, 97–113.CrossRefGoogle Scholar
  55. Lowry, A.R., Larson, K.M., Kostoglodov, V., and Sanchez, O. (2006). The fault slip budget in Guerrero, southern Mexico. Geophys. J. Int., 200, unpublished:
  56. Lozos, J.C., Oglesby, D.D., Brune, J.N., and Olsen, K.B. (2015). Rupture Propagation and Ground Motion of Strike-Slip Stepovers with Intermediate Fault Segments. B. Seismol. Soc. Am. 105(1), 387–399.CrossRefGoogle Scholar
  57. Mazzotti, S., Dragert, H., Hyndman, R.D., Miller, M.M., and Henton, J.A. (2014). GPS deformation in a region of high crustal seismicity: N. Cascadia forearc. Earth Planet. Sci. Lett. 198 (1–2), 41–48.CrossRefGoogle Scholar
  58. McCaffrey, R. (1992). Oblique plate convergence, slip vectors, and forearc deformation. J. Geophys. Res. 97, 8905–8915.CrossRefGoogle Scholar
  59. McCaffrey, R. (2009). The Tectonic Framework of the Sumatran Subduction Zone. Annu. Rev. Earth Planet. Sci. 37, 345–366.CrossRefGoogle Scholar
  60. McCaffrey, R, Zwick, P, Bock, Y, Prawirodirdjo, L, Genrich, J, Stevens, C.W., Puntodewo, S.S.O., and Subarya, C. (2000). Strain partitioning during oblique plate convergence in northern Sumatra: geodetic and seismologic constraints and numerical modeling. J. Geophys. Res. 105, 28363–76.CrossRefGoogle Scholar
  61. McCalpin, J.P. (Ed.), Paleoseismology (Academic press, Vol. 95, 2009).Google Scholar
  62. Melnick, D., Bookhagen, B., Strecker, M.R., and Echtler, H.P. (2009). Segmentation of megathrust rupture zones from fore-arc deformation patterns over hundreds to millions of years, Arauco peninsula, Chile. J. Geophys. Res. 114, B01407, doi: 10.1029/2008JB005788.
  63. Meltzner, A.J., Sieh, K., Abrams, M., Agnew, D.C., Hudnut, K.W., Avouac, J.-P, and Natawidjaja, D.H. (2006). Uplift and subsidence associated with the great Aceh-Andaman earthquake of 2004. J. Geophys. Res. 111, B02407, doi: 10.1029/2005JB003891.CrossRefGoogle Scholar
  64. Mendoza A.I. (2004). Algunos eventos recientes asociados a la brecha sísmica de Guerrero: Implicaciones para la sismotectónica y el peligro sísmico de la región. PhD thesis, UNAM, Mexico City.Google Scholar
  65. Meschede, M., Frisch, W., Herrmann, U., and Ratschbacher, L. (1996). Stress transmission across an active plate boundary: An example from southern Mexico. Tectonophysics 266, 81–100, doi: 10.1016/S0040-1951(96)00184-9.CrossRefGoogle Scholar
  66. Métois, M., Socquet, A., and Vigny C. (2012). Interseismic coupling, segmentation and mechanical behavior of the central Chile subduction zone. J. Geophys. Res. 117, B03406, doi: 10.1029/2011JB008736.
  67. Molnar, P., and Dayem, K.E. (2010). Major intracontinental strike-slip faults and contrasts in lithospheric strength. Geosphere 6 (4), 444–467.CrossRefGoogle Scholar
  68. Morell, K.D., Fisher, D.M., and Gardner, T.W. (2008). Inner forearc response to subduction of the Panama Fracture Zone, southern Central America. Earth Planet. Sci. Lett. 265, 82–95.CrossRefGoogle Scholar
  69. Moreno, M.S., Klotz, J., Melnick, D., Echtler, H., and Bataille, K. (2008). Active faulting and heterogeneous deformation across a megathrust segment boundary from GPS data, south central Chile (36–39 S), Geochem. Geophys. Geosyst. 9, Q12024, doi: 10.1029/2008GC002198.CrossRefGoogle Scholar
  70. Natawidjaja, D.H., Sieh, K., Chlieh, M., Galetzka, J., Suwargadi, B.W., Cheng, H., Edwards, R.L., Avouac, J.-P., and Ward, S.N. (2006). Source parameters of the great Sumatran megathrust earthquakes of 1797 and 1833 inferred from coral microatolls, J. Geophys. Res. 111, B06403, doi: 10.1029/2005JB004025.CrossRefGoogle Scholar
  71. Onur, T., and Seemann, M.R. (2004). Probabilities of significant earthquake shaking in communities across British Columbia: implications for emergency management. 13th World Conference on Earthquake Engineering, Vancouver, B.C., Canada, August 1–6, 2004, no. 1065.Google Scholar
  72. Ortner, H., Reiter, F., and Acs, P. (2002). Easy handling of tectonic data: the programs TectonicsVB for Mac and TectonicsFP for Windows. Comput. Geosci. 28, 1193–1200.CrossRefGoogle Scholar
  73. Ouchi, S. (1985). Response of alluvial rivers to slow active tectonics movement. Geol. Soc. Am. Bull. 96, 504–515.CrossRefGoogle Scholar
  74. Pacheco, J.F., and Singh, S.K. (2010). Seismicity and state of stress in Guerrero segment of the Mexican subduction zone. J. Geophys. Res. 115, doi: 10.1029/2009JB006453.
  75. Pacheco, J. F., Iglesias, A., and Singh, S.K. (2002). The 8 October Coyuca, Guerrero, Mexico earthquake (Mw 5.9): A normal fault in the expected compressional environment. Seism. Res. Lett. 73(2), 263.Google Scholar
  76. Pérez-Gutiérrez, R., Solari, L.A., Gómez, T.A., and Martens, U. (2009). Mesozoic geologic evolution of the Xolapa migmatitic Complex north of Acapulco, southern Mexico, and its tectonic significance. Revista Mexicana de Ciencias Geológicas, 26, 201–221.Google Scholar
  77. Plafker, G. (1969). Tectonics of the March 27, 1964 Alaska earthquake: U.S. Geological Survey Professional Paper 543–I, 74 p., 2 sheets, scales 1:2,000,000 and 1:500,000,
  78. Ramírez-Herrera, M.T. (1998). Geomorphic assessment of active tectonics in the Acambay Graben, Mexican Volcanic Belt. Earth Surf. Process. Landf. 23, 317–332.CrossRefGoogle Scholar
  79. Ramírez-Herrera, M.T. and Urrutia-Fucugauchi, J. (1999). Morphotectonic zones along the coast of the Pacific continental margin, southern Mexico. Geomorphology 28, 237–250.Google Scholar
  80. Ramírez-Herrera, M.T., Cundy, A., Kostoglodov, V., Carranza-Edwards A., Morales E., and Metcalfe, S. (2007). Sedimentary record of late Holocene relative sea-level change and tectonic deformation from the Guerrero Seismic Gap, Mexican Pacific Coast. Holocene 17/8, 1211–1220.CrossRefGoogle Scholar
  81. Ramírez-Herrera, M.T., Cundy, A., Kostoglodov, V., and Ortiz, M. (2009). Late Holocene tectonic land-level changes and tsunamis at Mitla lagoon, Guerrero, México. Geofis. Int. 48, 195–209.Google Scholar
  82. Ramirez-Herrera, M.T., Kostoglodov, V., and Urrutia-Fucugauchi, J. (2010). Overview of Recent Tectonic Deformation in the Mexican Subduction Zone. Pure Appl. Geophys. PAAG-320, doi: 10.1007/s00024-010-0205-y.CrossRefGoogle Scholar
  83. Ramsay, J.G. (1967). Folding and Fracturing of Rocks. McGraw-Hill Book Co. Inc., New York.Google Scholar
  84. Ramsay, J.G. and Lisle, R.J., The Techniques of Modern Structural Geology, 3: Applications of Continuum Mechanics in Structural Geology (Academic Press, London 2000, 702–1061).Google Scholar
  85. Rehak, K, Strecker, M., and Echtler, H. (2008). Morphotectonic segmentation of an active forearc, 37°–41°S, Chile. Geomorphology 94, 98–116.CrossRefGoogle Scholar
  86. Riller, U., Ratschbacher, L., and Frisch, W. (1992). Left-lateral transtension along the Tierra Colorada deformation zone, northern margin of the Xolapa magmatic arc of southern Mexico. J. S. Am. Earth Sci. 5, 237–249, doi: 10.1016/0895-9811(92)90023-R.CrossRefGoogle Scholar
  87. Ryder, I., Rietbrock, A., Kelson, K., Bürgmann, R., Floyd, M., Socquet, A., Vigny, C., and Carrizo, D. (2012). Large extensional aftershocks in the continental forearc triggered by the 2010 Maule earthquake, Chile. Geophys. J. Int. 188(3), 879–890.CrossRefGoogle Scholar
  88. Schaaf, P., Morán-Zenteno, D.J., Hernández-Bernal, M.S., Solís-Pichardo, G., Tolson, G., and Kohler, H. (1995). Paleogene continental margin truncation in southwestern Mexico: Geochronological evidence. Tectonics 14, 1339–1350, doi: 10.1029/95TC01928.CrossRefGoogle Scholar
  89. Schumm, S.A., Dumont, J.F., Holbrook, J.M., Active Tectonics and Alluvial Rivers (Cambridge University Press, Cambridge, 2000).Google Scholar
  90. Sedlock, R.L., Ortega-Gutiérrez, F., and Speed, R.C. (1993). Tectonostratigraphic terranes and tectonic evolution of Mexico. Geological Society of America, Special Paper 278.Google Scholar
  91. Shirzaei, M, Bürgmann, R., Oncken, O., Walter, T.R., Victor, P., and Ewiak, O. (2012). Response of crustal faults to megathrust earthquakes cycle: InSAR evidence from Mejillones Peninsula, northern Chile. Earth Planet. Sci. Lett. 333–334, 157–164, doi: 10.1016/j.epsl.2012.04.001.CrossRefGoogle Scholar
  92. Simons, M., Minson, S.E., Sladen, A., Ortega, F., Owen, S.E. Meng, L., Ampuero, J-P., Wei, S., Chu, R., Helmberger, D.V., Kanamori, H., Hetland, E., Moore, A.W., and Webb, F.H. (2011). The 2011 Magnitude 9.0 Tohoku-Oki Earthquake: Mosaicking the Megathrust from Seconds to Centuries. Science 332, 1421–1425. doi: 10.1126/science.1206731.CrossRefGoogle Scholar
  93. Singh, S.K., and Mortera, F. (1991). Source-time functions of large Mexican subduction earthquakes, morphology of the Benioff zone and the extent of the Guerrero gap. J. Geophys. Res. 96, 21,487–21,502.CrossRefGoogle Scholar
  94. Singh, S. K., Ordaz, M., Alcántara, L., Shapiro, N., Kostoglodov, V., Pacheco, J. F., Alcocer, S., Gutiérez, C., Quaas, R., Mikumo, T., and Ovando, E. (2000). The Oaxaca Earthquake of 30 September 1999 (Mw = 7.5): a normal-faulting event in the subducted Cocos plate. Seismol. Res. Lett. 71(1), 67–78.Google Scholar
  95. Solari, L.A., Torres de León, R., Hernández Pineda, G., Solé, J., Solís-Pichardo, G., and Hernández-Treviño, T. (2007). Tectonic significance of Cretaceous–Tertiary magmatic and structural evolution of the northern margin of the Xolapa Complex, Tierra Colorada area, southern Mexico. GSA Bulletin 119, 9/10, 1265–1279; doi:10.1130B26023.1.Google Scholar
  96. Soto, M.D., Mann, P., Escalona, A., and Wood, L.J. (2007). Late Holocene strike-slip offset of a subsurface channel interpreted from three-dimensional seismic data, eastern offshore Trinidad. Geology 35 (9), 859–862.CrossRefGoogle Scholar
  97. Stokes, M., Mather, A.E., Belfoul, A., and Farik, F. (2008). Active and passive tectonic controls for transverse drainage and river gorge development in a collisional mountain belt (Dades Gorges, High Atlas Mountains, Morocco). Geomorphology 102, 2–20.CrossRefGoogle Scholar
  98. Subarya, C., Chlieh, M., Prawirodirdjo, L., Avouac, J.P., Bock, Y., Sieh, K., Meltzner, A.J., Natawidjaja, D.H., and McCaffrey, R. (2006). Plate-boundary deformation associated with the great Sumatra-Andaman earthquake. Nature 440, 46–51.CrossRefGoogle Scholar
  99. Tajima, F., Mori, J., and Kennett, B.L.N. (2013). A review of the 2011 Tohoku-Oki earthquake (Mw 9.0): Large-scale rupture across heterogeneous plate coupling. Tectonophysics 586, 15–34. doi: 10.1016/j.tecto.2012.09.014.CrossRefGoogle Scholar
  100. Talavera-Mendoza, O., Ruiz, J., Corona-Chavez, P., Gehrels, G.E., Sarmiento-Villagrana, A., García-Díaz, J.L., and Salgado-Souto, S.A. (2013). Origin and provenance of basement metasedimentary rocks from the Xolapa Complex: New constraints on the Chortis–southern Mexico connection. Earth Planet. Sci. Lett. 369–370, 188–199.CrossRefGoogle Scholar
  101. Toda, S., and Tsutsumi, H. (2013). Simultaneous Reactivation of Two, Subparallel, Inland Normal Faults during the Mw 6.6 11 April 2011 Iwaki Earthquake Triggered by the Mw 9.0 Tohoku-oki, Japan, Earthquake. Bull. Seismol. Soc. Am. 103(2B), 1584–1602.Google Scholar
  102. Tolson, G. (2005). La falla Chacalapa en el sur de Oaxaca. Bol. Soc. Geol. Mex. 57, 111–122.CrossRefGoogle Scholar
  103. Valencia, V.A., Ducea, M., Talavera-Mendoza, O., Gehrels, G., Ruiz, J., and Shoemaker, S. (2009). U-Pb geochronology of granitoids in the north-western boundary of the Xolapa Terrane. Revista Mexicana en Ciencias Geologicas 26 (1), 189–200.Google Scholar
  104. Vargas, G., Rebolledo, S., Sepúlveda, S., Lahsen, A., Thiele, R., Townley, B., Padilla, C., Rauld, R., Herrera, M., and Lara, M. (2013). Submarine earthquake rupture, active faulting and volcanism along the major Liquiñe-Ofqui Fault Zone and implications for seismic hazard assessment in the Patagonian Andes. Andean Geol. 40 (1), 141–171.Google Scholar
  105. Vigny, C., Socquet, A., Peyrat, S., Ruegg, J-C., Métois, M., Madariaga, R., Morvan, S., Lacassin, R., Campos, J., Carrizo, D., Bejar-Pizarro, M., Barrientos, S., Armijo, R., Aranda, C., Valderas-Bermejo, M-C., Ortega, I., Bondoux, F., Baize, S., Lyon-Caen, H., Pavex, A., Vilotte, J.P., Bevis, M., Brooks, B., Smalley, R., Parra, H., Baez, J-C., Blanco, M., Cimbaro, S., and Kendrick, E. (2011). The 2010 Mw 8.8 Maule Megathrust Earthquake of Central Chile, Monitored by GPS. Science 332, 1417–1421, doi: 10.1126/science.1204132.CrossRefGoogle Scholar
  106. Wells, D.L., and Coppersmith, K.J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. B. Seismol. Soc. Am. 84(4), 974–1002.Google Scholar
  107. Wesnousky, S.G. (2006). Predicting the endpoints of earthquake ruptures. Nature 444(7117), 358–360.CrossRefGoogle Scholar
  108. Wortel, R., and Cloetingh, S. (1981). On the origin of the Cocos-Nazca spreading center. Geology 9, 425–430.CrossRefGoogle Scholar
  109. Żaba, J., Małolepszy, Z., Gaidzik, K., Ciesielczuk, J. and Paulo, A. (2012). Faults network in the Rio Colca valley between Maca and Pinchollo, Central Andes, Southern Peru. ASGP 82 (3), 279–290.Google Scholar

Web references

  1. National Institute of Statistics and Geography: (December, 2014).
  2. Mexican Geological Survey: (June, 2014).

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  • Krzysztof Gaidzik
    • 1
  • Maria Teresa Ramírez-Herrera
    • 1
    • 2
    Email author
  • Vladimir Kostoglodov
    • 3
  1. 1.Laboratorio Universitario de Geofísica Ambiental and Instituto de GeografíaUniversidad Nacional Autónoma de MéxicoMexico, DFMexico
  2. 2.Berkeley Seismological Laboratory, Department of Earth and Planetary ScienceUniversity of California BerkeleyBerkeleyUSA
  3. 3.Instituto de GeofísicaUniversidad Nacional Autónoma de MéxicoMexico, DFMexico

Personalised recommendations