Toroidal, Counter-Toroidal, and Upwelling Flow in the Mantle Wedge of the Rivera and Cocos Plates: Implications for IOB Geochemistry in the Trans-Mexican Volcanic Belt

  • Florian NeumannEmail author
  • Alberto Vásquez-Serrano
  • Gustavo Tolson
  • Raquel Negrete-Aranda
  • Juan Contreras
Part of the Pageoph Topical Volumes book series (PTV)


We carried out analog laboratory modeling at a scale 1:4,000,000 and computer rendering of the flow patterns in a simulated western Middle American subduction zone. The scaled model consists of a transparent tank filled with corn syrup and housing two conveyor belts made of polyethylene strips. One of the strips dips 60° and moves at a velocity of 30 mm/min simulating the Rivera plate. The other one dips 45°, moves at 90 mm/min simulating the subduction of the Cocos plate. Our scaled subduction zone also includes a gap between the simulated slabs analogous to a tear recently observed in shear wave tomography studies. An acrylic plate 3 mm thick floats on the syrup in grazing contact with the polyethylene strips and simulates the overriding North America plate. Our experiments reveal a deep toroidal flow of asthenospheric mantle through the Cocos–Rivera separation. The flow is driven by a pressure gradient associated with the down-dip differential-motion of the slabs. Similarly, low pressure generated by the fast-moving Cocos plate creates a shallow counter-toroidal flow in the uppermost 100 km of the mantle wedge. The flow draws mantle beneath the western Trans-Mexican Volcanic Belt to the Jalisco block, then plunges into the deep mantle by the descending poloidal cell of the Cocos slab. Moreover, our model suggests a hydraulic jump causes an ~250 km asthenosphere upwelling around the area where intra-arc extensional systems converge in western Mexico. The upwelling eventually merges with the shallow counter-toroidal flow describing a motion in 3D space similar to an Archimedes’ screw. Our results indicate the differential motion between subducting slabs drives mixing in the mantle wedge of the Rivera plate and allows the slab to steepen and retreat. Model results are in good agreement with seismic anisotropy studies and the geochemistry of lavas erupted in the Jalisco block. The model can explain the eruption of OIB lavas in the vicinity of the City of Guadalajara in western Mexico, and the south shoulder in the central part of the Tepic-Zacoalco fault system.


Subduction zone Trans-Mexican volcanic belt TMVB slab breakoff 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aguillon-Robles, A., Calmus, T., Benoit, M., Bellon, H., Maury, R.C., Cotten, J., Bourgois, J., and Michaud, F. (2001), Late Miocene adakites and Nb-enriched basalts from Vizcaino Peninsula, Mexico: indicators of East Pacific rise subduction below southern Baja California?, Geology. 29, 531–534.CrossRefGoogle Scholar
  2. Allan, J.F. (1986), Geology of the Northern Colima and Zacoalco Grabens, southwest Mexico: Late Cenozoic rifting in the Mexican Volcanic Belt, GSA Bulletin. 97, 473–485.CrossRefGoogle Scholar
  3. Basu, A.R. (1975), Geochemestry of the ultramafic xenoliths from San Quintin volcanic field, Baja California: in Boyd F.R., and Meyer H.O.A, eds., The mantle sample: Inclusions in kimberlites and other volcanics: American Geophysical Union, International Kimberlite Conference, 2d, Santa Fe, N.M., 1977, Proceedings, v. 2, 391–399.Google Scholar
  4. Benoit, M., Aguillon-Robles, A., Calmus, T., Maury, R.C., Bellon, H., Cotten, J., Bourgois, J., and Michaud, F. (2001), Geochemical diversity of Late Miocene volcanism in southern Baja California, Mexico: implication of mantle and crustal sources during the opening of an asthenospheric window, The Journal of Geology. 110, 627–648.CrossRefGoogle Scholar
  5. Burkett, E. R., and Billen, M. I. (2010). Three-dimensionality of slab detachment due to ridge-trench collision: Laterally simultaneous boudinage versus tear propagation. Geochemistry, Geophysics, Geosystems, 11(11).Google Scholar
  6. Calmus, T., A. Aguillón Robles, R. C. Maury, H. Bellon, M. Benoit, J. Cotten, J. Bourgois and F. Michaud (2003). “Spatial and temporal evolution of basalts and magnesian andesites (“bajaites”) from Baja California, Mexico: the role of slab melts.” Lithos 66: 77–105.CrossRefGoogle Scholar
  7. Calmus, T., Pallares, C., Maury, R.C., Aguillon-Robles, A., Bellon, H., Benoit, M., and Michaud, F. (2011), Volcanic markers of the post-subduction evolution of Baja California and Sonora, Mexico: Slab tearing versus lithospheric rupture of the gulf of California, Pure and Applied Geophysics. 168, 1303–1330.CrossRefGoogle Scholar
  8. Castillo, P.R. (2008), Origin of the adakite-high-Nb basalt association and its implications for postsubduction magmatism in Baja California, Mexico, GSA Bulletin. 120, 451–462.CrossRefGoogle Scholar
  9. Corbo-Camargo, F., Arzate-Flores, J.A., Alvarez-Bejar, R., Aranda-Gomez, J.J., and Yutsis, V. (2013), Subduction of the Rivera plate beneath the Jalisco block as imaged by magnetotelluric data, Revista Mexicana de Ciencias Geológicas. 30, 268–281.Google Scholar
  10. Contreras, J. (2013), A model for the state of brittle failure of the western Trans-Mexican Volcanic Belt, International Geology Review. 1–12.Google Scholar
  11. d’Acremont, E., Leroy, S., and Burov, E.B. (2003), Numerical modelling of a mantle plume: The plume head-lithosphere interaction in the formation of an oceanic large igneous province, Earth and Planetary Science Letters. 206, 379–396.CrossRefGoogle Scholar
  12. Defant, M.J., Kepezhinskas P. (2001), Evidence suggest slab melting in arc magmas, EOS Trans. Am. Geophys. Union. 82, 65–69.CrossRefGoogle Scholar
  13. Defant, M.J., Jackson, T.E., Drummond, M.S., De Boer, J.Z., Bellon, H., Feigenson, M.D., Maury, R.C., and Stewart, R.H. (1992), The geochemistry of young volcanism throughout western Panama and southeastern Costa Rica: an overview, Geological Society of London. 149, 569–579.CrossRefGoogle Scholar
  14. DeMets, C., and Wilson, D.S. (1997), Relative motions of the Pacific, Rivera, North American, and Cocos plates since 0.78 Ma, Journal of Geophysical Research. 102, 2789–2806.CrossRefGoogle Scholar
  15. DeMets, C., and Traylen, S. (2000), Motion of the Rivera plate since 10 Ma relative to the Pacific and North America plates and the mantle, Tectonophysics. 318, 119–159.CrossRefGoogle Scholar
  16. Ferrari, L. and Rosas-Elguera, J. (1999), Late Miocene to Quaternary extension at the northern boundary of the Jalisco block, western Mexico: in Delgado-Granados, H., Aguirre-Díaz, G., and Stock, J.M., eds., The Tepic-Zoacalco rift revisited in Cenozoic Tectonics and Volcanism of Mexico, Geological Society of America, Special Paper. 334, 1-23.Google Scholar
  17. Ferrari L., Petrone, C.M., and Francalanci, L. (2001), Generation of oceanic-island basalt-type volcanism in the western Trans-Mexican volcanic belt by slab rollback, asthenosphere infiltration, and variable flux melting, Geology. 29, 507–510.CrossRefGoogle Scholar
  18. Ferrari, L. (2004), Slab detachment control on mafic volcanic pulse and mantle heterogeneity in central Mexico, Geology. 32, 77–80.CrossRefGoogle Scholar
  19. Ferrari, L., Orozco-Esquivel, T., Manea, V., and Manea, M. (2012), The dynamic history of the Trans-Mexican Volcanic Belt and the Mexico subduction zone, Tectonophysics. 522–523, 122–149.CrossRefGoogle Scholar
  20. Gardine, M.D., Dominguez, T., West, M.E., Grand, S.P., and Suhardja, S.K. (2007). The deep seismic structure of Volcan de Colima, Mexico, AGU Spring Meeting Abstracts. 1, 2.Google Scholar
  21. Gómez-Tuena, A., Mori, L., Goldstein, S.L., and Pérez-Arvizu, O. (2011). Magmatic diversity of western Mexico as a function of metamorphic transformations in the subducted oceanic plate. Geochimica et Cosmochimica Acta, 75(1), 213–241.CrossRefGoogle Scholar
  22. Hess, H.H., (1964), Seismic anisotropy of the uppermost mantle under oceans: Nature. 204, 629–631.Google Scholar
  23. Heuret, A., Funiciello, F., Faccenna, C., and Lallemanda, S. (2007), Plate kinematics, slab shape and back-arc stress: A comparison between laboratory models and current subduction zones, Earth and Planetary Science Letters. 256, 473–483.CrossRefGoogle Scholar
  24. Hochstaedter, A.G., Ryan, J.G., Luhr, J.F., and Hasenaka, T. (1996). On B/Be ratios in the Mexican volcanic belt, Geochimica et Cosmochimica Acta. 60, 613–628.CrossRefGoogle Scholar
  25. Kincaid, C., and Griffiths, R. W. (2003). Laboratory models of the thermal evolution of the mantle during rollback subduction. Nature, 425(6953), 58–62.CrossRefGoogle Scholar
  26. Landau, L.D. and Lifshitz, E.M., Fluid Mechanics (Second Edition) (Pergamon 1987).CrossRefGoogle Scholar
  27. Lonsdale, P. (2005), Creation of the Cocos and Nazca plates by fission of the Farallon plate, Tectonophysics. 404, 237–264.CrossRefGoogle Scholar
  28. Luhr, J.F., Nelson, S.A., Allan, J.F., and Carmichael, I.S.E. (1985), Active rifting in southwestern Mexico: Manifestations of an incipient eastward spreading-ridge jump, Geology. 13, 54–57.CrossRefGoogle Scholar
  29. Luhr, J.F. (1997), Extensional tectonics and the diverse primitive volcanic rocks in the western Mexican Volcanic Belt, The Canadian Mineralogist. 35, 473–500.Google Scholar
  30. Mann, P. (2007), Global catalogue, classification and tectonic origins of restraining- and releasing bends on active and ancient strike-slip fault systems, Geological Society, London Special Publications. 290, 13–142.Google Scholar
  31. Marquez, A., Oyarzun, R., Doblas, M. and Verma, S.P. (1999), Alkalic (ocean-island basalt type) and calc-alkalic volcanism in the Mexican volcanic belt: A case for plume-related magmatism and propagating rifting at an active margin?, Geology. 27, 51–54.CrossRefGoogle Scholar
  32. Moore, G., Marone, C., Carmichael, I.S.E. and Renne, P. (1994), Basaltic volcanism and extension near the intersection of the Sierra Madre volcanic province and the Mexican Volcanic Belt, GSA Bulletin. 106, 383–394.CrossRefGoogle Scholar
  33. Morris, J.D., and Hart, S.R. (1983), Geochemical and isotopic variability in lavas from the eastern Trans-Mexican Volcanic Belt: slab detachment in a subduction zone with varying dip, Geochimica et Cosmochimica Acta. 47, 2015–2030.Google Scholar
  34. Negrete-Aranda, R. and Canon-Tapia, E. (2008), Post-subduction volcanism in the Baja California Peninsula, Mexico: the effects of tectonic reconfiguration in volcanic systems, Lithos. 102, 392–414.CrossRefGoogle Scholar
  35. Orozco-Esquivel, T., Petrone, C.M., Ferrari, L., Tagami, T. and Manetti, P. (2007), Isotopic and incompatible element constraints on the genesis of island arc volcanics from Cold Bay and Amak Island, Aleutians, and implications for mantle structure, Lithos. 93, 149–174.Google Scholar
  36. Pardo, M., and Suarez, G. (1995). Shape of the subducted Rivera and Cocos plates in southern Mexico: Seismic and tectonic implications, Journal of Geophysical Research. 100, 12,357–12,373.CrossRefGoogle Scholar
  37. Petrone, C. M., Francalanci, L., Carlson, R. W., Ferrari, L., and Conticelli, S. (2003). Unusual coexistence of subduction-related and intraplate-type magmatism: Sr, Nd and Pb isotope and trace element data from the magmatism of the San Pedro–Ceboruco graben (Nayarit, Mexico). Chemical Geology, 193(1), 1–24.CrossRefGoogle Scholar
  38. Righter K. (2000). A comparison of basaltic volcanism in the Cascades and western Mexico: compositional diversity in continental arcs, Tectonophysics. 318, 99–117.CrossRefGoogle Scholar
  39. Sajona, F.G., Maury, R.C., Bellon, H., Cotten, J., and Defant, M.J. (1996), High Field Strength Element Enrichment of Pliocene—Pleistocene Island Arc Basalts, Zamboanga Peninsula, Western Mindanao (Philippines), Oxford Univ Press. 37, 693–726.CrossRefGoogle Scholar
  40. Sbalzarini, I.F., and Koumoutsakos, P. (2005), Feature point tracking and trajectory analysis for video imaging in cell biology, Journal of Structural Biology 151, 182–95.CrossRefGoogle Scholar
  41. Schellart, W.P. (2004), Kinematics of subduction and subduction-induced flow in the upper mantle, Journal of Geophysical Research. 109, 1–19.Google Scholar
  42. Schellart, W.P., Stegman, D.R., Farrington, R.J., and Moresi, L. (2011), Influence of lateral slab edge distance on plate velocity, trench velocity, and subduction partitioning, Journal of Geophysical Research: Solid Earth. 116.Google Scholar
  43. Scholz, C.H. and Campos, J. (1995), On the mechanism of seismic decoupling and back arc spreading at subduction zones, Journal of Geophysical Research. 100, 22,103–22,115.CrossRefGoogle Scholar
  44. Scholz, C.H. and Campos, J. (2012), The seismic coupling of subduction zones revisited, Journal of Geophysical Research. 117, B05310.CrossRefGoogle Scholar
  45. Smits, A.J. and Lim, T.T., Flow Visualization: Techniques and Examples (Second Edition) (Imperial College Press 2012).Google Scholar
  46. Soto, L.G., Ni, J.F., Grand, S.P., Sandvol, E., Valenzuela, R.W., Guzman-Speziale, M., Gomez-Gonzalez, J.M., and Domınguez-Reyes, T. (2009), Mantle flow in the Rivera–Cocos subduction zone, Geophysical Journal International. 179, 1004–1012.CrossRefGoogle Scholar
  47. Stock, J.M, and Lee, J. (1994), Do microplates in subduction zones leave a geological record?, Tectonics. 13, 1472–1487.CrossRefGoogle Scholar
  48. Storey, M., Rogers, G., Saunders, A.D. and Terrell, D.J. (1989), San Quintin volcanic field, Baja California, Mexico:‘within-plate’magmatism following ridge subduction, Terra Nova. 1, 195–202.Google Scholar
  49. Stubailo, I., Beghein, C., and Davis, P. M. (2012), Structure and anisotropy of the Mexico subduction zone based on Rayleigh-wave analysis and implications for the geometry of the Trans-Mexican Volcanic Belt, Journal of Geophysical Research. 117, 1–16.Google Scholar
  50. Suhardja, S. K. (2013), Mapping the Rivera and Cocos Subduction Zone, (Ph.D. Thesis) University of Texas, Austin.Google Scholar
  51. Suter, M., Legorreta-Quintero, O., Lopez-Martinez, M., Aguirre-Diaz, G., and Farrar, E. (1995), The Acambay graben: Active intraarc extension in the trans-Mexican volcanic belt, Mexico, Tectonics. 14, 1245–1262.CrossRefGoogle Scholar
  52. Suter, M., Lopez-Martinez, M., Legorreta-Quintero, O., and Martinez-Carillo, M. (2001), Quaternary intra-arc extension in the central Trans-Mexican volcanic belt, GSA Bulletin. 113, 693–703.CrossRefGoogle Scholar
  53. Tian, L., Castillo, P.R., Lonsdale, P.F., Hahm, D. and Hilton, D.R. (2011), Petrology and Sr-Nd-Pb-He isotope geochemistry of postspreading lavas on fossil spreading axes off Baja California Sur, Mexico, Geochemistry, Geophysics, Geosystems. 12.CrossRefGoogle Scholar
  54. Tommasi, A. Tikoff, B. and Vauchez, A. (1999), Upper mantle tectonics: three-dimensional deformation, olivine crystallographic fabrics and seismic properties, Earth and Planetary Science Letters. 168, 173–186.CrossRefGoogle Scholar
  55. Turcotte, D.L., and Schubert, G., Geodynamics (Cambridge University Press 2002).Google Scholar
  56. Turner, S., and Hawkesworth, C. (1998). Using geochemistry to map mantle flow beneath the Lau Basin. Geology, 26(11), 1019-1022.CrossRefGoogle Scholar
  57. van Hunen, J., van den Berg, A.P. and Vlaar, N.J. (2002), On the role of subducting oceanic plateaus in the development of shallow flat subduction, Tectonophysics. 352, 317–333.CrossRefGoogle Scholar
  58. van Hunen, J., van den Berg, A.P. and Vlaar, N.J. (2004), Various mechanisms to induce present-day shallow flat subduction and implications for the younger Earth: a numerical parameter study, Physics of the Earth and Planetary Interiors. 146, 179–194.CrossRefGoogle Scholar
  59. Verma, S.P. (2002), Absence of Cocos plate subduction-related basic volcanism in southern Mexico: a unique case on Earth?, Geology. 30, 1095–1098.CrossRefGoogle Scholar
  60. Verma, S. P. (2009), Continental Rift Setting for the Central Part of the Mexican Volcanic Belt: A Statistical Approach. The Open Geology Journal. 3, 8–29.CrossRefGoogle Scholar
  61. Wilson, J.T. (1973), Mantle plumes and plate motions, Tectonophysics. 19,149–164.CrossRefGoogle Scholar
  62. Yang, T., Grand, S.P., Wilson, D., Guzman-Speziale, M., Gomez-Gonzalez, J.M., Dominguez-Reyes, T., and Ni, J. (2009), Seismic structure beneath the Rivera subduction zone from finite-frequency seismic tomography, Journal of Geophysical Research. 114, 1–12.Google Scholar
  63. Zandt, G., and Humphreys, E. (2008). Toroidal mantle flow through the western US slab window. Geology, 36(4), 295–298.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing 2015

Authors and Affiliations

  • Florian Neumann
    • 1
    Email author
  • Alberto Vásquez-Serrano
    • 2
  • Gustavo Tolson
    • 3
  • Raquel Negrete-Aranda
    • 4
  • Juan Contreras
    • 4
  1. 1.CICESEEnsenadaMexico
  2. 2.Instituto de GeologiaUNAMMexico DFMexico
  3. 3.Departamento de Geologia, Instituto de GeologiaUNAMMexico DFMexico
  4. 4.Departamento de GeologiaCICESEEnsenadaMexico

Personalised recommendations