Advertisement

Osteoporosis and Fatigue Fracture Prevention by Analysis of Bone Microdamage

  • Gerardo Presbítero
  • David Gutiérrez
  • David Taylor
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

We analyzed the conditions under which microcracks, generated by fatigue, affect the fracture properties of bones; this has clinical relevance to stress fractures and osteoporosis. A novel theoretical model was developed to describe microcrack behaviour, using probabilistic analysis and the concept of a characteristic length. In this way we identified effects of aging and gamma radiation sterilisation, which weaken bone and cause accelerated development of microcracks. This work will help in the development of better predictive models to understand and prevent stress fractures and osteoporosis-related fragility fractures.

Keywords

Osteoporosis Weibull distribution Fatigue fractures Gamma radiation Bone microdamage 

References

  1. 1.
    H.M. Frost, Some ABC’s of skeletal pathophysiology: 5. Calcif. Tissue Int. 49, 229–231 (1991)CrossRefGoogle Scholar
  2. 2.
    D.B. Burr et al., Bone microdamage and skeletal fragility in osteoporotic and stress fractures. J. Bone Miner. Res. 12, 6–15 (1997)CrossRefGoogle Scholar
  3. 3.
    B.D. Agarwal, L.J. Broutman (eds.), Analysis and Performance of Composite Materials (Wiley, New York, 1980), pp. 287–362Google Scholar
  4. 4.
    P. Zioupos, C. Kaffy, Tissue heterogeneity, composite architecture and fractal dimension effects in the fracture of ageing human bone. Int. J. Fract. 139, 407–424 (2006)CrossRefGoogle Scholar
  5. 5.
    H.M. Frost, Presence of microscopic cracks in vivo in bone. Henry Ford Hosp. Med. Bull. 8, 25–35 (1960)Google Scholar
  6. 6.
    T.M. Wright, W.C. Hayes, Tensile testing of bone over a side range of strain rates: effects of strain rate, microstructure and density. Med. Biol. Eng. 14, 671–680 (1976)CrossRefGoogle Scholar
  7. 7.
    D.R. Carter, W.C. Hayes, Compact Bone Fatigue Damage: A Microscopic Examination. Clin. Orthop. Relat. Res. 127, 265–274 (1977)Google Scholar
  8. 8.
    R. Wank, K.J. Jepsen, Aged rat bone fatigues in a fundamentally different manner from yonder adult bone. 47 annual meeting, Orthopaedic Research Society (2001)Google Scholar
  9. 9.
    T. Diab et al., Age-dependent fatigue behavior of human cortical bone. Eur. J. Morphol. 45(1/2), 53–59 (2005)CrossRefGoogle Scholar
  10. 10.
    T.L. Norman, T.M. Little, Y.N. Yeni, Age-related changes in porosity and mineralization and in-service damage accumulation. J. Biomech. 41, 2868–2873 (2008)CrossRefGoogle Scholar
  11. 11.
    O. Akkus, Fracture resistance of gamma radiation sterilized cortical bone allografts. J. Orthop. Res. 19, 927–934 (2001)CrossRefGoogle Scholar
  12. 12.
    T.C. Lee et al., Sequential labelling of microdamage in bone using chelating agents. J. Orthop. Res. 18, 322–325 (2000)CrossRefGoogle Scholar
  13. 13.
    F.J. O’Brien, D. Taylor, T.C. Lee, Microcrack accumulation at different intervals during fatigue testing of compact bone. J. Biomech. 36(7), 973–980 (2003)Google Scholar
  14. 14.
    F.J. O’ Brien, D. Taylor, T.C. Lee, The effect of bone microstructure on the initiation and growth of microcracks. J. Orthop. Res. 23(2), 475–480 (2005)Google Scholar
  15. 15.
    G. Presbitero, F.J. O’Brien, T.C. Lee, D. Taylor, Distribution of microcrack lengths in bone in vivo and in vitro. J. Theor. Biol. 7(304), 164–171 (2012)Google Scholar
  16. 16.
    F.J. O’Brien, D. Tayor, T.C. Lee, An improved labelling technique for monitoring microcrack growth in compact bone. J. Biomech. 35(4), 523–526 (2002)Google Scholar
  17. 17.
    K.L. Gellasch, V.L. Kalscheur, Fatigue microdamage in the radial predilection site for osteosarcoma in dogs. Am. J. Vet. Res. 63(6), 896–899 (2002)CrossRefGoogle Scholar
  18. 18.
    D.B. Burr, Does microdamage accumulation affect the mechanical properties of bone? J. Biomech. 31(4), 337–345 (1998)CrossRefGoogle Scholar
  19. 19.
    M.F. Khan, Microdamage and Remodelling in an Ovine Model (NUI, Royal College of Surgeons in Ireland, 2010)Google Scholar
  20. 20.
    D. Vashishth, J.C. Behiri, W. Bonfield, Crack growth resistance in cortical bone: concept of microcrack toughening. J. Biomech. 30(8), 763–769 (1997)CrossRefGoogle Scholar
  21. 21.
    P. Lucksanasombool, W.A. Higgs, Fracture toughness of bovine bone: influence of orientation and storage media. Biomaterials 22, 3127–3132 (2001)CrossRefGoogle Scholar
  22. 22.
    R.K. Nalla et al., Aspects of in vitro fatigue in human cortical bone: time and cycle dependent crack growth. Biomaterials 26(14), 2183–2195 (2005)CrossRefGoogle Scholar
  23. 23.
    D.R. Carter, W.E. Caler, Cycle-dependent and time-dependent bone fracture with repeated loading. J. Biomech. Eng. 105, 166–170 (1983)CrossRefGoogle Scholar
  24. 24.
    P. Zioupos, X.T. Wang, J.D. Currey, Experimental and theoretical quantification of the development of damage in fatigue tests of bone and antler. J. Biomech. 29(8), 989–1002 (1996)CrossRefGoogle Scholar
  25. 25.
    D. Taylor, Fatigue of bone and bones: an analysis based on stressed volume. J. Orthop. Res. 16, 163–169 (1998)CrossRefGoogle Scholar
  26. 26.
    D. Taylor et al., Compression data on bovine bone confirms that a “stressed volume” principle explains the variability of fatigue strength results. J. Biomech. 32(11), 1199–1203 (1999)CrossRefGoogle Scholar
  27. 27.
    D. Taylor, J.G. Hazenberg, T.C. Lee, The cellular transducer in damage-stimulated bone remodelling: a theoretical investigation using fracture mechanics. J. Theor. Biol. 225(1), 65–75 (2003)CrossRefGoogle Scholar
  28. 28.
    J.J. Kruzic, R.O. Ritchie, Fatigue of mineralized tissues: cortical bone and dentin. J. Mech. Behav. Biomed. Mater. (2007)Google Scholar
  29. 29.
    M.B. Schaffler, K. Choi, C. Milgrom, Aging and matrix microdamage accumulation in human compact bone. Bone 17(6), 521–525 (1995)CrossRefGoogle Scholar
  30. 30.
    J.D. Currey et al., Effects of ionizing radiation on the mechanical properties of human bone. J. Orthop. Res. 15(1), 111–117 (1997)CrossRefGoogle Scholar
  31. 31.
    E.J. Mitchell et al., The effect of gamma radiation sterilization on the fatigue crack propagation resistance of human cortical bone. J. Bone Joint Surg. Am. 86-A(12), 2648–2657 (2004)Google Scholar
  32. 32.
    O. Akkus, R.M. Belaney, Sterilization by gamma radiation impairs the tensile fatigue life of cortical bone by two orders of magnitude. J. Orthop. Res. 23, 1054–1058 (2005)CrossRefGoogle Scholar
  33. 33.
    Z. Zhou et al., Mechanical strength of cortical allografts with gamma radiation versus ethylene oxide sterilization. Acta Orthop. Belg. 77(5), 670–675 (2011)Google Scholar
  34. 34.
    A. Kaminski et al., Effect of gamma irradiation on mechanical properties of human cortical bone: influence of different processing methods. Cell Tissue Bank 13, 363–374 (2012)CrossRefGoogle Scholar
  35. 35.
    A. Islam et al., Gamma radiation sterilization reduces the high-cycle fatigue life of allograft bone. Clin. Orthop. Relat. Res. 4(3), 827–835 (2016)CrossRefGoogle Scholar
  36. 36.
    U. Andreaus, M. Colloca, A. Toscano, Mechanical behavior of a prosthetized human femur: a comparative analysis between walking and stair climbing by using the finite element model. Biophys. Bioeng. Lett. 1, 1–15 (2008)Google Scholar
  37. 37.
    D.B. Burr, C. Milgrom, D. Fyhrie, M. Forwood, M. Nyska, A. Finestone, S. Hoshaw, E. Saiag, A. Simkin, In vivo measurement of human tibial strains during vigorous activity. Bone 18(5), 405–410 (1996)CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  • Gerardo Presbítero
    • 1
  • David Gutiérrez
    • 2
  • David Taylor
    • 3
  1. 1.Faculty of EngineeringNational Autonomous University of Mexico, University Centre for Advanced Technology (PUNTA-UNAM)MonterreyMexico
  2. 2.Center for Research and Advanced Studies (Cinvestav)MonterreyMexico
  3. 3.Trinity Centre for BioengineeringTrinity College DublinDublinIreland

Personalised recommendations