Circadian Computing: Sensing, Modeling, and Maintaining Biological Rhythms

  • Saeed AbdullahEmail author
  • Elizabeth L. Murnane
  • Mark Matthews
  • Tanzeem Choudhury


Human physiology and behavior are deeply rooted in the daily 24 h temporal structure. Our biological processes vary significantly, predictably, and idiosyncratically throughout the day in accordance with these circadian rhythms, which in turn influence our physical and mental performance. Prolonged disruption of biological rhythms has serious consequences for physical and mental well-being, contributing to cardiovascular disease, cancer, obesity, and mental health problems. Here we present Circadian Computing, technologies that are aware of and can have a positive impact on our internal rhythms. We use a combination of automated sensing of behavioral traits along with manual ecological momentary assessments (EMA) to model body clock patterns, detect disruptions, and drive in-situ interventions. Identifying disruptions and providing circadian interventions is particularly valuable in the context of mental health—for example, to help prevent relapse in patients with bipolar disorder. More generally, such personalized, data-driven tools are capable of adapting to individual rhythms and providing more biologically attuned support in a number of areas including physical and cognitive performance, sleep, clinical therapy, and overall wellbeing. This chapter describes the design, development, and deployment of these “circadian-aware” systems: a novel class of technology aimed at modeling and maintaining our innate biological rhythms.


Circadian Disruption Munich Chronotype Questionnaire (MCTQ) Interpersonal Social Rhythm Therapy (IPSRT) Social Rhythm Metric (SRM) Circadian Biomarkers 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abdullah, S., Matthews, M., Frank, E., Doherty, G., Gay, G., Choudhury, T.: Automatic detection of social rhythms in bipolar disorder. Journal of the American Medical Informatics Association 23(3), 538–543 (2016)CrossRefGoogle Scholar
  2. 2.
    Abdullah, S., Matthews, M., Murnane, E.L., Gay, G., Choudhury, T.: Towards circadian computing: early to bed and early to rise makes some of us unhealthy and sleep deprived. In: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 673–684. ACM (2014)Google Scholar
  3. 3.
    Abdullah, S., Murnane, E.L., Matthews, M., Kay, M.,, Kientz, J.A., Gay, G., Choudhury, T.: Cognitive rhythms: Unobtrusive and continuous sensing of alertness using a mobile phone. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing. ACM (2016)Google Scholar
  4. 4.
    Allada, R., Emery, P., Takahashi, J.S., Rosbash, M.: Stopping time: the genetics of fly and mouse circadian clocks. Annual review of neuroscience 24(1), 1091–1119 (2001)CrossRefGoogle Scholar
  5. 5.
    Ancoli-Israel, S., Cole, R., Alessi, C., Chambers, M., Moorcroft, W., Pollak, C.: The role of actigraphy in the study of sleep and circadian rhythms. american academy of sleep medicine review paper. Sleep 26(3), 342–392 (2003)Google Scholar
  6. 6.
    Aschoff, J.: Circadian rhythms in man. Science 148, 1427–1432 (1965)CrossRefGoogle Scholar
  7. 7.
    Baldessarini, R.J., Tondo, L.: Suicide risk and treatments for patients with bipolar disorder. JAMA 290(11), 1517–1519 (2003)CrossRefGoogle Scholar
  8. 8.
    Benedetti, F., Dallaspezia, S., Colombo, C., Pirovano, A., Marino, E., Smeraldi, E.: A length polymorphism in the circadian clock gene per3 influences age at onset of bipolar disorder. Neuroscience letters 445(2), 184–187 (2008)CrossRefGoogle Scholar
  9. 9.
    Blatter, K., Cajochen, C.: Circadian rhythms in cognitive performance: methodological constraints, protocols, theoretical underpinnings. Physiology & behavior 90(2), 196–208 (2007)CrossRefGoogle Scholar
  10. 10.
    Borbély, A.A.: A two process model of sleep regulation. Human neurobiology (1982)Google Scholar
  11. 11.
    Cajochen, C., Knoblauch, V., Wirz-Justice, A., Kräuchi, K., Graw, P., Wallach, D.: Circadian modulation of sequence learning under high and low sleep pressure conditions. Behavioural brain research 151(1), 167–176 (2004)CrossRefGoogle Scholar
  12. 12.
    Câmara Magalhães, S., Vitorino Souza, C., Rocha Dias, T., Felipe Carvalhedo de Bruin, P., Meireles Sales de Bruin, V.: Lifestyle regularity measured by the social rhythm metric in parkinson’s disease. Chronobiology international 22(5), 917–924 (2005)Google Scholar
  13. 13.
    Campos, T.F., Galvão Silveira, A.B., Miranda Barroso, M.T.: Regularity of daily activities in stroke. Chronobiology international 25(4), 611–624 (2008)CrossRefGoogle Scholar
  14. 14.
    Carrier, J., Monk, T.H.: Circadian rhythms of performance: new trends. Chronobiology international 17(6), 719–732 (2000)CrossRefGoogle Scholar
  15. 15.
    Carskadon, M.A., Acebo, C., Jenni, O.G.: Regulation of adolescent sleep: implications for behavior. Annals of the New York Academy of Sciences 1021(1), 276–291 (2004)CrossRefGoogle Scholar
  16. 16.
    Chandrashekaran, M.: Biological rhythms research: A personal account. Journal of biosciences 23(5), 545–555 (1998)CrossRefGoogle Scholar
  17. 17.
    Chang, A.M., Aeschbach, D., Duffy, J.F., Czeisler, C.A.: Evening use of light-emitting ereaders negatively affects sleep, circadian timing, and next-morning alertness. Proceedings of the National Academy of Sciences 112(4), 1232–1237 (2015)CrossRefGoogle Scholar
  18. 18.
    Chen, Z., Lin, M., Chen, F., Lane, N.D., Cardone, G., Wang, R., Li, T., Chen, Y., Choudhury, T., Campbell, A.T.: Unobtrusive sleep monitoring using smartphones. In: Pervasive Computing Technologies for Healthcare (PervasiveHealth), 2013 7th International Conference on, pp. 145–152. IEEE (2013)Google Scholar
  19. 19.
    Claustrat, B., Brun, J., Chazot, G.: The basic physiology and pathophysiology of melatonin. Sleep medicine reviews 9(1), 11–24 (2005)CrossRefGoogle Scholar
  20. 20.
    Cohen, M.C., Rohtla, K.M., Lavery, C.E., Muller, J.E., Mittleman, M.A.: Meta-analysis of the morning excess of acute myocardial infarction and sudden cardiac death. The American journal of cardiology 79(11), 1512–1516 (1997)CrossRefGoogle Scholar
  21. 21.
    Cohrs, S.: Sleep disturbances in patients with schizophrenia: impact and effect of antipsychotics. CNS drugs 22(11), 939–962 (2008)CrossRefGoogle Scholar
  22. 22.
    Cole, R.J., Smith, J.S., Alcal, Y.C., Elliott, J.A., Kripke, D.F.: Bright-light mask treatment of delayed sleep phase syndrome. Journal of Biological Rhythms 17(1), 89–101 (2002)CrossRefGoogle Scholar
  23. 23.
    Corruble, E., Frank, E., Gressier, F., Courtet, P., Bayle, F., Llorca, P.M., Vaiva, G., Gorwood, P.: Morningness–eveningness and treatment response in major depressive disorder. Chronobiology international 31(2), 283–289 (2014)CrossRefGoogle Scholar
  24. 24.
    Czeisler, C.A., Duffy, J.F., Shanahan, T.L., Brown, E.N., Mitchell, J.F., Rimmer, D.W., Ronda, J.M., Silva, E.J., Allan, J.S., Emens, J.S., et al.: Stability, precision, and near-24-hour period of the human circadian pacemaker. Science 284(5423), 2177–2181 (1999)CrossRefGoogle Scholar
  25. 25.
    Dills, A.K., Hernández-Julián, R.: Course scheduling and academic performance. Economics of Education Review 27(6), 646–654 (2008)CrossRefGoogle Scholar
  26. 26.
    Dilsaver, S.C.: An estimate of the minimum economic burden of bipolar i and ii disorders in the united states: 2009. Journal of affective disorders 129(1), 79–83 (2011)CrossRefGoogle Scholar
  27. 27.
    Ehlers, C.L., Frank, E., Kupfer, D.J.: Social zeitgebers and biological rhythms: a unified approach to understanding the etiology of depression. Archives of general psychiatry 45(10), 948–952 (1988)CrossRefGoogle Scholar
  28. 28.
    Elliott, W.J.: Circadian variation in the timing of stroke onset a meta-analysis. Stroke 29(5), 992–996 (1998)CrossRefGoogle Scholar
  29. 29.
    Eskin, A.: Identification and physiology of circadian pacemakers. Federation proceedings 38(12), 2570–2572 (1979). URL
  30. 30.
    Fabbri, M., Mencarelli, C., Adan, A., Natale, V.: Time-of-day and circadian typology on memory retrieval. Biological Rhythm Research 44(1), 125–142 (2013)CrossRefGoogle Scholar
  31. 31.
    Folkard, S., Lombardi, D.A., Spencer, M.B.: Estimating the circadian rhythm in the risk of occupational injuries and accidents. Chronobiology international 23(6), 1181–1192 (2006)CrossRefGoogle Scholar
  32. 32.
    Foster, R.G., Kreitzman, L.: Rhythms of life: the biological clocks that control the daily lives of every living thing. Yale University Press (2005)Google Scholar
  33. 33.
    Frank, E.: Interpersonal and social rhythm therapy: a means of improving depression and preventing relapse in bipolar disorder. Journal of clinical psychology 63(5), 463–473 (2007)CrossRefGoogle Scholar
  34. 34.
    Frank, E., Kupfer, D.J., Thase, M.E., Mallinger, A.G., Swartz, H.A., Fagiolini, A.M., Grochocinski, V., Houck, P., Scott, J., Thompson, W., et al.: Two-year outcomes for interpersonal and social rhythm therapy in individuals with bipolar i disorder. Archives of general psychiatry 62(9), 996–1004 (2005)CrossRefGoogle Scholar
  35. 35.
    Frank, E., Soreca, I., Swartz, H.A., Fagiolini, A.M., Mallinger, A.G., Thase, M.E., Grochocinski, V.J., Houck, P.R., Kupfer, D.J., et al.: The role of interpersonal and social rhythm therapy in improving occupational functioning in patients with bipolar i disorder. The American journal of psychiatry 165(12), 1559–1565 (2008)CrossRefGoogle Scholar
  36. 36.
    Frank, E., Swartz, H.A., Kupfer, D.J.: Interpersonal and social rhythm therapy: managing the chaos of bipolar disorder. Biological psychiatry 48(6), 593–604 (2000)CrossRefGoogle Scholar
  37. 37.
    Golden, S.S., Canales, S.R.: Cyanobacterial circadian clocks—timing is everything. Nature Reviews Microbiology 1(3), 191–199 (2003)CrossRefGoogle Scholar
  38. 38.
    Gwinner, E., Hau, M., Heigl, S.: Melatonin: generation and modulation of avian circadian rhythms. Brain research bulletin 44(4), 439–444 (1997)CrossRefGoogle Scholar
  39. 39.
    Hao, T., Xing, G., Zhou, G.: isleep: unobtrusive sleep quality monitoring using smartphones. In: Proceedings of the 11th ACM Conference on Embedded Networked Sensor Systems, p. 4. ACM (2013)Google Scholar
  40. 40.
    Harris, M.D., Siegel, L.B., Alloway, J.A.: Gout and hyperuricemia. American family physician 59(4), 925–934 (1999)Google Scholar
  41. 41.
    Haus, E., Touitou, Y.: Chronobiology in laboratory medicine. In: Biologic rhythms in clinical and laboratory medicine, pp. 673–708. Springer (1992)Google Scholar
  42. 42.
    Hébert, M., Martin, S.K., Lee, C., Eastman, C.I.: The effects of prior light history on the suppression of melatonin by light in humans. Journal of pineal research 33(4), 198–203 (2002)CrossRefGoogle Scholar
  43. 43.
    Hermida, R.C., Ayala, D.E., Calvo, C., Portaluppi, F., Smolensky, M.H.: Chronotherapy of hypertension: administration-time-dependent effects of treatment on the circadian pattern of blood pressure. Advanced drug delivery reviews 59(9), 923–939 (2007)CrossRefGoogle Scholar
  44. 44.
    Horne, J.A., Reyner, L.A.: Sleep related vehicle accidents. Bmj 310(6979), 565–567 (1995)CrossRefGoogle Scholar
  45. 45.
    Huikuri, H.V., Niemelä, M., Ojala, S., Rantala, A., Ikäheimo, M., Airaksinen, K.: Circadian rhythms of frequency domain measures of heart rate variability in healthy subjects and patients with coronary artery disease. effects of arousal and upright posture. Circulation 90(1), 121–126 (1994)Google Scholar
  46. 46.
    Jones, S.H., Hare, D.J., Evershed, K.: Actigraphic assessment of circadian activity and sleep patterns in bipolar disorder. Bipolar disorders 7(2), 176–186 (2005)CrossRefGoogle Scholar
  47. 47.
    Kaplan, K.A., Talbot, L.S., Gruber, J., Harvey, A.G.: Evaluating sleep in bipolar disorder: comparison between actigraphy, polysomnography, and sleep diary. Bipolar disorders 14(8), 870–879 (2012)CrossRefGoogle Scholar
  48. 48.
    Karatsoreos, I.N.: Links between circadian rhythms and psychiatric disease. Frontiers in behavioral neuroscience 8 (2014)Google Scholar
  49. 49.
    Kelley, P., Lockley, S.W., Foster, R.G., Kelley, J.: Synchronizing education to adolescent biology:‘let teens sleep, start school later’. Learning, Media and Technology 40(2), 210–226 (2015)CrossRefGoogle Scholar
  50. 50.
    Knutsson, U., Dahlgren, J., Marcus, C., Rosberg, S., Brönnegård, M., Stierna, P., Albertsson-Wikland, K.: Circadian cortisol rhythms in healthy boys and girls: Relationship with age, growth, body composition, and pubertal development 1. The Journal of Clinical Endocrinology & Metabolism 82(2), 536–540 (1997)Google Scholar
  51. 51.
    Krejcar, O., Jirka, J., Janckulik, D.: Use of mobile phones as intelligent sensors for sound input analysis and sleep state detection. Sensors 11(6), 6037–6055 (2011)CrossRefGoogle Scholar
  52. 52.
    Lamont, E., Coutu, D., Cermakian, N., Boivin, D.: Circadian rhythms and clock genes in psychotic disorders. The Israel journal of psychiatry and related sciences 47(1), 27 (2010)Google Scholar
  53. 53.
    Lamont, E.W., Legault-Coutu, D., Cermakian, N., Boivin, D.B.: The role of circadian clock genes in mental disorders. Dialogues in clinical neuroscience 9(3), 333 (2007)Google Scholar
  54. 54.
    Lévi, F., Focan, C., Karaboué, A., de la Valette, V., Focan-Henrard, D., Baron, B., Kreutz, F., Giacchetti, S.: Implications of circadian clocks for the rhythmic delivery of cancer therapeutics. Advanced drug delivery reviews 59(9), 1015–1035 (2007)CrossRefGoogle Scholar
  55. 55.
    Lockley, S.W., Skene, D.J., Arendt, J.: Comparison between subjective and actigraphic measurement of sleep and sleep rhythms. Journal of sleep research 8(3), 175–183 (1999)CrossRefGoogle Scholar
  56. 56.
    de Mairan, J.: Observation botanique. Hist. Acad. Roy. Sci 35, 36 (1729)Google Scholar
  57. 57.
    Mansour, H.A., Talkowski, M.E., Wood, J., Chowdari, K.V., McClain, L., Prasad, K., Montrose, D., Fagiolini, A., Friedman, E.S., Allen, M.H., et al.: Association study of 21 circadian genes with bipolar i disorder, schizoaffective disorder, and schizophrenia. Bipolar disorders 11(7), 701–710 (2009)CrossRefGoogle Scholar
  58. 58.
    Martin, J., Jeste, D.V., Caliguiri, M.P., Patterson, T., Heaton, R., Ancoli-Israel, S.: Actigraphic estimates of circadian rhythms and sleep/wake in older schizophrenia patients. Schizophrenia research 47(1), 77–86 (2001)CrossRefGoogle Scholar
  59. 59.
    Mathers, C., Fat, D.M., Boerma, J.T.: The global burden of disease: 2004 update. World Health Organization (2008)Google Scholar
  60. 60.
    Matthews, M., Voida, S., Abdullah, S., Doherty, G., Choudhury, T., Im, S., Gay, G.: In situ design for mental illness: Considering the pathology of bipolar disorder in mhealth design. In: Proceedings of the 17th International Conference on Human-Computer Interaction with Mobile Devices and Services, pp. 86–97. ACM (2015)Google Scholar
  61. 61.
    Matthews, M., Abdullah, S., Murnane, E., Voida, S., Choudhury, T., Gay, G., Frank, E.: Development and evaluation of a smartphone-based measure of social rhythms for bipolar disorder. Assessment 23(4), 472–483 (2016)CrossRefGoogle Scholar
  62. 62.
    Menet, J.S., Rosbash, M.: When brain clocks lose track of time: cause or consequence of neuropsychiatric disorders. Current opinion in neurobiology 21(6), 849–857 (2011)CrossRefGoogle Scholar
  63. 63.
    Meyer, J.S., Novak, M.A.: Minireview: hair cortisol: a novel biomarker of hypothalamic-pituitary-adrenocortical activity. Endocrinology 153(9), 4120–4127 (2012)CrossRefGoogle Scholar
  64. 64.
    Millar, A., Espie, C.A., Scott, J.: The sleep of remitted bipolar outpatients: a controlled naturalistic study using actigraphy. Journal of affective disorders 80(2), 145–153 (2004)CrossRefGoogle Scholar
  65. 65.
    Miller, G.E., Chen, E., Zhou, E.S.: If it goes up, must it come down? chronic stress and the hypothalamic-pituitary-adrenocortical axis in humans. Psychological bulletin 133(1), 25 (2007)CrossRefGoogle Scholar
  66. 66.
    Min, J.K., Doryab, A., Wiese, J., Amini, S., Zimmerman, J., Hong, J.I.: Toss ‘N’ turn: Smartphone as sleep and sleep quality detector. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’14, pp. 477–486. ACM, New York, NY, USA (2014). doi:  10.1145/2556288.2557220. URL
  67. 67.
    Mirick, D.K., Davis, S.: Melatonin as a biomarker of circadian dysregulation. Cancer Epidemiology Biomarkers & Prevention 17(12), 3306–3313 (2008)CrossRefGoogle Scholar
  68. 68.
    Moore, J.G., Halberg, F.: Circadian rhythm of gastric acid secretion in active duodenal ulcer: chronobiological statistical characteristics and comparison of acid secretory and plasma gastrin patterns with healthy subjects and post-vagotomy and pyloroplasty patients. Chronobiology international 4(1), 101–110 (1987)CrossRefGoogle Scholar
  69. 69.
    Moran, D.S., Mendal, L.: Core temperature measurement. Sports Medicine 32(14), 879–885 (2002)CrossRefGoogle Scholar
  70. 70.
    Moturu, S.T., Khayal, I., Aharony, N., Pan, W., Pentland, A.: Using social sensing to understand the links between sleep, mood, and sociability. In: Privacy, Security, Risk and Trust (PASSAT) and 2011 IEEE Third Inernational Conference on Social Computing (SocialCom), 2011 IEEE Third International Conference on, pp. 208–214. IEEE (2011)Google Scholar
  71. 71.
    Münch, M.Y., Cain, S.W., Duffy, J.F.: Biological Rhythms Workshop IC: Sleep and Rhythms. Cold Spring Harbor Symposia on Quantitative Biology 72(1), 35–46 (2007)CrossRefGoogle Scholar
  72. 72.
    Murnane, E.L., Abdullah, S., Matthews, M., Choudhury, T., Gay, G.: Social (media) jet lag: How usage of social technology can modulate and reflect circadian rhythms. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 843–854. ACM (2015)Google Scholar
  73. 73.
    Murnane, E.L., Abdullah, S., Matthews, M., Kay, M.,, Kientz, J.A., Choudhury, T., Gay, G., Cosley, D.: Mobile manifestations of alertness: Connecting biological rhythms with patterns of smartphone app use. In: Proceedings of the 18th International Conference on Human-Computer Interaction with Mobile Devices and Services. ACM (2016)Google Scholar
  74. 74.
    Myers, E., Startup, H., Freeman, D.: Cognitive behavioural treatment of insomnia in individuals with persistent persecutory delusions: a pilot trial. Journal of behavior therapy and experimental psychiatry 42(3), 330–336 (2011)CrossRefGoogle Scholar
  75. 75.
    Nandakumar, R., Gollakota, S., Watson, N.: Contactless sleep apnea detection on smartphones. In: Proceedings of the 13th Annual International Conference on Mobile Systems, Applications, and Services, pp. 45–57. ACM (2015)Google Scholar
  76. 76.
    Niedermann, R., Wyss, E., Annaheim, S., Psikuta, A., Davey, S., Rossi, R.M.: Prediction of human core body temperature using non-invasive measurement methods. International journal of biometeorology 58(1), 7–15 (2014)CrossRefGoogle Scholar
  77. 77.
    Pagel, J.F., Pandi-Perumal, S.R.: Primary Care Sleep Medicine: A Practical Guide. Springer (2014)Google Scholar
  78. 78.
    Pan, A., Devore, E., Schernhammer, E.S.: How Shift Work and a Destabilized Circadian System may Increase Risk for Development of Cancer and Type 2 Diabetes. Colwell/Circadian Medicine. John Wiley & Sons, Inc, Hoboken, NJ (2015)CrossRefGoogle Scholar
  79. 79.
    Peirson, S.N., Foster, R.G.: Sleep and Circadian Rhythm Disruption in Psychosis. Colwell/Circadian Medicine. John Wiley & Sons, Inc, Hoboken, NJ (2015)CrossRefGoogle Scholar
  80. 80.
    Philip, P., Åkerstedt, T.: Transport and industrial safety, how are they affected by sleepiness and sleep restriction? Sleep medicine reviews 10(5), 347–356 (2006)CrossRefGoogle Scholar
  81. 81.
    Plante, D.T., Winkelman, J.W.: Sleep disturbance in bipolar disorder: therapeutic implications. American Journal of Psychiatry (2008)Google Scholar
  82. 82.
    Reppert, S.M., Weaver, D.R.: Molecular analysis of mammalian circadian rhythms. Annual review of physiology 63(1), 647–676 (2001)CrossRefGoogle Scholar
  83. 83.
    Rigas, B., Torosis, J., McDougall, C.J., Vener, K.J., Spiro, H.M.: The circadian rhythm of biliary colic. Journal of clinical gastroenterology 12(4), 409–414 (1990)CrossRefGoogle Scholar
  84. 84.
    Roenneberg, T.: Chronobiology: The human sleep project. Nature 498(7455), 427–428 (2013)CrossRefGoogle Scholar
  85. 85.
    Roenneberg, T., Allebrandt, K.V., Merrow, M., Vetter, C.: Social jetlag and obesity. Current Biology 22(10), 939–943 (2012)CrossRefGoogle Scholar
  86. 86.
    Roenneberg, T., Kuehnle, T., Juda, M., Kantermann, T., Allebrandt, K., Gordijn, M., Merrow, M.: Epidemiology of the human circadian clock. Sleep medicine reviews 11(6), 429–438 (2007)CrossRefGoogle Scholar
  87. 87.
    Roenneberg, T., Kuehnle, T., Pramstaller, P.P., Ricken, J., Havel, M., Guth, A., Merrow, M.: A marker for the end of adolescence. Current Biology 14(24), R1038–R1039 (2004)Google Scholar
  88. 88.
    Roenneberg, T., Merrow, M.: Entrainment of the human circadian clock. In: Cold Spring Harbor symposia on quantitative biology, vol. 72, pp. 293–299. Cold Spring Harbor Laboratory Press (2007)Google Scholar
  89. 89.
    Roenneberg, T., Wirz-Justice, A., Merrow, M.: Life between clocks: daily temporal patterns of human chronotypes. Journal of biological rhythms 18(1), 80–90 (2003)CrossRefGoogle Scholar
  90. 90.
    Saunders, D.S.: Insect clocks. Elsevier (2002)Google Scholar
  91. 91.
    Schimitt, R., Bragatti, J., Levandovsky, R., Hidalgo, M., Bianchin, M.: Social rhythm and other chronobiological findings in juvenile myoclonic epilepsy. Biological Rhythm Research 46(3), 371–377 (2015)CrossRefGoogle Scholar
  92. 92.
    Schroeder, A.M., Colwell, C.S.: How to fix a broken clock. Trends in pharmacological sciences 34(11), 605–619 (2013)CrossRefGoogle Scholar
  93. 93.
    Shear, M.K., Randall, J., Monk, T.H., Ritenour, A., Frank, X.T., Reynolds, C., Kupfer, D.J., et al.: Social rhythm in anxiety disorder patients. Anxiety 1(2), 90–95 (1994)CrossRefGoogle Scholar
  94. 94.
    Smolensky, M.H., Lemmer, B., Reinberg, A.E.: Chronobiology and chronotherapy of allergic rhinitis and bronchial asthma. Advanced drug delivery reviews 59(9), 852–882 (2007)CrossRefGoogle Scholar
  95. 95.
    Smolensky, M.H., Peppas, N.A.: Chronobiology, drug delivery, and chronotherapeutics. Advanced Drug Delivery Reviews 59(9–10), 828–851 (2007)CrossRefGoogle Scholar
  96. 96.
    Stevens, R.G., Blask, D.E., Brainard, G.C., Hansen, J., Lockley, S.W., Provencio, I., Rea, M.S., Reinlib, L.: Meeting report: the role of environmental lighting and circadian disruption in cancer and other diseases. Environmental Health Perspectives pp. 1357–1362 (2007)Google Scholar
  97. 97.
    Taylor, D.J., Bramoweth, A.D.: Patterns and consequences of inadequate sleep in college students: substance use and motor vehicle accidents. Journal of Adolescent Health 46(6), 610–612 (2010)CrossRefGoogle Scholar
  98. 98.
    Terman, J.S., Terman, M., Lo, E.S., Cooper, T.B.: Circadian time of morning light administration and therapeutic response in winter depression. Archives of General Psychiatry 58(1), 69–75 (2001)CrossRefGoogle Scholar
  99. 99.
    Tobler, I.: Phylogeny of sleep regulation. Principles and practice of sleep medicine 4, 77–90 (2005)CrossRefGoogle Scholar
  100. 100.
    Turner-Warwick, M.: Epidemiology of nocturnal asthma. The American journal of medicine 85(1), 6–8 (1988)CrossRefGoogle Scholar
  101. 101.
    VanSomeren, E.J.: More than a marker: interaction between the circadian regulation of temperature and sleep, age-related changes, and treatment possibilities. Chronobiology international 17(3), 313–354 (2000)CrossRefGoogle Scholar
  102. 102.
    Vink, J.M., Vink, J.M., Groot, A.S., Kerkhof, G.A., Boomsma, D.I.: Genetic analysis of morningness and eveningness. Chronobiology International 18(5), 809–822 (2001)CrossRefGoogle Scholar
  103. 103.
    Voida, S., Matthews, M., Abdullah, S., Xi, M.C., Green, M., Jang, W.J., Hu, D., Weinrich, J., Patil, P., Rabbi, M., et al.: Moodrhythm: tracking and supporting daily rhythms. In: Proceedings of the 2013 ACM conference on Pervasive and ubiquitous computing adjunct publication, pp. 67–70. ACM (2013)Google Scholar
  104. 104.
    Wittmann, M., Dinich, J., Merrow, M., Roenneberg, T.: Social jetlag: misalignment of biological and social time. Chronobiology international 23(1–2), 497–509 (2006)CrossRefGoogle Scholar
  105. 105.
    Wright Jr., K.P., Hull, J.T., Hughes, R.J., Ronda, J.M., Czeisler, C.A.: Sleep and wakefulness out of phase with internal biological time impairs learning in humans. Journal of Cognitive Neuroscience 18(4), 508–521 (2006)CrossRefGoogle Scholar
  106. 106.
    Wulff, K., Dijk, D.J., Middleton, B., Foster, R.G., Joyce, E.M.: Sleep and circadian rhythm disruption in schizophrenia. The British Journal of Psychiatry 200(4), 308–316 (2012)CrossRefGoogle Scholar
  107. 107.
    Xu, X., Karis, A.J., Buller, M.J., Santee, W.R.: Relationship between core temperature, skin temperature, and heat flux during exercise in heat. European journal of applied physiology 113(9), 2381–2389 (2013)CrossRefGoogle Scholar
  108. 108.
    Yee, K.M., Pringle, S.D., Struthers, A.D.: Circadian variation in the effects of aldosterone blockade on heart rate variability and qt dispersion in congestive heart failure. Journal of the American College of Cardiology 37(7), 1800–1807 (2001)CrossRefGoogle Scholar
  109. 109.
    Zee, P.C., Attarian, H., Videnovic, A.: Circadian rhythm abnormalities. Continuum: Lifelong Learning in Neurology 19(1 Sleep Disorders), 132 (2013)Google Scholar
  110. 110.
    Zimmet, P., Wall, J., Rome, R., Stimmler, L., Jarrett, R.: Diurnal variation in glucose tolerance: Associated changes in plasma insulin, growth hormone, and non-esterified. BMJ 1(5906), 485–488 (1974)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Saeed Abdullah
    • 1
    Email author
  • Elizabeth L. Murnane
    • 1
  • Mark Matthews
    • 1
  • Tanzeem Choudhury
    • 1
  1. 1.Cornell UniversityIthacaUSA

Personalised recommendations