Advertisement

Investigating the Anisotropic Behaviour of Lean Duplex Stainless Steel 2101

  • A. A. H. AmeriEmail author
  • J. P. Escobedo-Diaz
  • M. Ashraf
  • Md. Z. Quadir
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

The quasi-static mechanical response of hot rolled lean duplex stainless steel 2101 (LDSS 2101) in rolling, transverse and normal directions under compression loading has been investigated for its perceived anisotropic behaviour. Microstructural characterization is performed by optical microscopy and Electron Back Scatter Diffraction (EBSD) to qualitatively define the influence of the texture by using Taylor factor and grain sizes, and phase boundaries by utilizing the modified Hall-Petch formula. It was observed that LDSS2101 does not show anisotropic behaviour in terms of the mechanical strength but it has a clear anisotropy in the lateral strains; the microstructural explanation of this response may result from the phase boundaries strengthening.

Keywords

LDSS2101 Anisotropy Microstructure Compression 

Notes

Acknowledgements

The authors would like to thank Dr. Frank Brink and Dr. Hua Chen in the Centre for Advanced Microscopy at the Australian National University in conducting some of EBSD scans.

References

  1. 1.
    Outokumpo (2016) Stainless steel alloy surcharges Europe. [Online]. Available: http://www.outokumpu.com/en/pricing-aaf/stainless-steel-alloy-surcharges/Pages/default.aspx
  2. 2.
    Liljas M, Johansson P, Liu HP, Olsson COA (2008) Development of a lean duplex stainless steel. Steel Res Int 79(6):466–473Google Scholar
  3. 3.
    Strubbia R, Hereñú S, Marinelli MC, Alvarez-Armas I (2012) Short crack nucleation and growth in lean duplex stainless steels fatigued at room temperature. Int J Fatigue 41:90–94CrossRefGoogle Scholar
  4. 4.
    Sieurin H, Sandström R, Westin EM (2006) Fracture toughness of the lean duplex stainless steel LDX 2101. Metall Mater Trans A 37(10):2975–2981CrossRefGoogle Scholar
  5. 5.
    Bassani P, Breda M (2013) Characterization of a cold-rolled 2101 lean duplex stainless steel. Microsc Microanal 19(4):988–995CrossRefGoogle Scholar
  6. 6.
    Strubbia R, Hereñú S, Alvarez-Armas I, Krupp U (2014) Short fatigue cracks nucleation and growth in lean duplex stainless steel LDX 2101. Mater Sci Eng A 615:169–174CrossRefGoogle Scholar
  7. 7.
    Huang Y, Young B (2014) Experimental investigation of cold-formed lean duplex stainless steel beam-columns. Thin-Walled Struct 76:105–117CrossRefGoogle Scholar
  8. 8.
    Fargas G, Akdut N, Anglada M, Mateo A (2008) Microstructural evolution during industrial rolling of a duplex stainless steel. ISIJ Int 48(11):1596–1602CrossRefGoogle Scholar
  9. 9.
    Mateo A, Llanes L, Akdut N, Stolarz J, Anglada M (2003) Anisotropy effects on the fatigue behaviour of rolled duplex stainless steels. Int J Fatigue 25(6):481–488CrossRefGoogle Scholar
  10. 10.
    Hutchinson W, Ushioda K, Runnsjö G (1985) Anisotropy of tensile behaviour in a duplex stainless steel sheet. Mater Sci Technol 1(August):728–736CrossRefGoogle Scholar
  11. 11.
    Ul-Haq A, Weiland H, Bunge HJ (1994) Textures and microstructures in duplex stainless steel. Mater Sci Technol 10(4):289–298CrossRefGoogle Scholar
  12. 12.
    Fargas G, Akdut N, Anglada M, Mateo A (2011) Reduction of anisotropy in cold-rolled duplex stainless steel sheets by using sigma phase transformation. Metall Mater Trans A Phys Metall Mater Sci 42(11):3472–3483CrossRefGoogle Scholar
  13. 13.
    ASTM A 240/A 240 M—04a (2004) Standard specification for chromium and chromium-nickel stainless steel plate, sheet, and strip for pressure vessels and for general applications. Standards iGoogle Scholar
  14. 14.
    Standard test method for plastic strain ratio r for sheet metal (2010) ASTM E517Google Scholar
  15. 15.
    Liang ZY, Wang X, Huang W, Huang MX (2015) Strain rate sensitivity and evolution of dislocations and twins in a twinning-induced plasticity steel. Acta Mater 88:170–179CrossRefGoogle Scholar
  16. 16.
    Fan Z, Tsakiropoulos P, Smith PA, Miodownik AP (1993) Extension of the Hall-Petch relation to two-ductile-phase alloys. Philos Mag A 67(2):515–531Google Scholar
  17. 17.
    Chen L, Yuan FP, Jiang P, Xie JJ, Wu XL (2014) Simultaneous improvement of tensile strength and ductility in micro-duplex structure consisting of austenite and ferrite. Mater Sci Eng A 618:563–571CrossRefGoogle Scholar
  18. 18.
    Liu Y, Yan H, Wang X, Yan M (2013) Effect of hot deformation mode on the microstructure evolution of lean duplex stainless steel 2101. Mater Sci Eng A 575:41–47CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  • A. A. H. Ameri
    • 1
    Email author
  • J. P. Escobedo-Diaz
    • 1
  • M. Ashraf
    • 1
  • Md. Z. Quadir
    • 2
  1. 1.School of Engineering and Information TechnologyThe University of New South WalesCanberraAustralia
  2. 2.Faculty of Science and EngineeringCurtin UniversityPerthAustralia

Personalised recommendations