Sulfur Metabolism in Phototrophic Bacteria

  • Christiane DahlEmail author


Sulfur is one of the most versatile elements in life due to its reactivity in different oxidation and reduction states. In contrast to the assimilatory provision of sulfur-containing cell constituents that is found in most taxonomic groups, dissimilation is restricted to prokaryotes and serves energy-yielding processes where sulfur compounds are donors or acceptors of electrons. In many anoxygenic phototrophic bacteria, reduced sulfur compounds play a prominent role as electron donors for photosynthetic carbon dioxide fixation. This process is especially characteristic for the green sulfur bacteria (GSB) and the purple sulfur bacteria (PSB). Allochromatium vinosum and Chlorobaculum tepidum , representatives of the PSB and GSB, respectively, are the workhorses for detailed elucidation of sulfur oxidation pathways. Genes identified in these organisms served as the basis of a genome-based survey of the distribution of genes involved in the oxidation of sulfur compounds in other genome-sequenced anoxygenic phototrophs. These analyses show that dissimilatory sulfur metabolism is very complex and built together from various modules encoding different enzymes in the different organisms. Comparative genomics in combination with biochemical data also provide a clear picture of sulfate assimilation in anoxygenic phototrophs.


Sulfur metabolism Purple sulfur bacteria Sulfur globules Sulfide Thiosulfate Tetrathionate Sulfate Allochromatium vinosum Green sulfur bacteria Sulfur oxidation Assimilatory sulfate reduction 



Support by the Deutsche Forschungsgenmeinschaft (Grant Da 351/6-2) is gratefully acknowledged.


  1. Appia-Ayme C, Little PJ, Matsumoto Y et al (2001) Cytochrome complex essential for photosynthetic oxidation of both thiosulfate and sulfide in Rhodovulum sulfidophilum. J Bacteriol 183:6107–6118PubMedPubMedCentralCrossRefGoogle Scholar
  2. Arieli B, Padan E, Shahak Y (1991) Sulfide-induced sulfide—quinone reductase acitivity in thylakoids of Oscillatoria limnetica. J Biol Chem 266:104–111PubMedGoogle Scholar
  3. Arieli B, Shahak Y, Taglicht D et al (1994) Purification and characterization of sulfide-quinone reductase, a novel enzyme driving anoxygenic photosynthesis in Oscillatoria limnetica. J Biol Chem 269:5705–5711PubMedGoogle Scholar
  4. Auernik KS, Kelly RM (2010) Physiological versatility of the extremely thermoacidophilic archaeon Metallosphaera sedula supported by transcriptomic analysis of heterotrophic, autotrophic, and mixotrophic growth. Appl Environ Microbiol 76:931–935PubMedCrossRefGoogle Scholar
  5. Baldock MI, Denger K, Smits THM et al (2007) Roseovarius sp. strain 217: aerobic taurine dissimilation via acetate kinase and acetate-CoA ligase. FEMS Microbiol Lett 271:202–206PubMedCrossRefGoogle Scholar
  6. Bamford VA, Bruno S, Rasmussen T et al (2002) Structural basis for the oxidation of thiosulfate by a sulfur cycle enzyme. EMBO J 21:5599–5610PubMedPubMedCentralCrossRefGoogle Scholar
  7. Barbosa-Jefferson VL, Zhao FJ, Mcgrath SP et al (1998) Thiosulphate and tetrathionate oxidation in arable soils. Soil Biol Biochem 30:553–559CrossRefGoogle Scholar
  8. Bartsch RG (1978) Cytochromes. In: Clayton RK, Sistrom WR (eds) The photosynthetic bacteria. Plenum Press, New York, pp 249–279Google Scholar
  9. Bobadilla Fazzini RA, Cortes MP, Padilla L et al (2013) Stoichiometric modeling of oxidation of reduced inorganic sulfur compounds (Riscs) in Acidithiobacillus thiooxidans. Biotechnol Bioeng 110:2242–2251PubMedCrossRefGoogle Scholar
  10. Bosshard HR, Davidson MW, Knaff DB et al (1986) Complex formation and electron transfer between mitochondrial cytochrome c and flavocytochrome c552 from Chromatium vinosum. J Biol Chem 261:190–193PubMedGoogle Scholar
  11. Boughanemi S, Lyonnet J, Infossi P et al (2016) Microbial oxidative sulfur metabolism: biochemical evidence of the membrane-bound heterodisulfide reductase-like complex of the bacterium Aquifex aeolicus. FEMS Microbiol Lett 363Google Scholar
  12. Bradley JM, Marritt SJ, Kihlken MA et al (2012) Redox and chemical activities of the hemes in the sulfur oxidation pathway enzyme SoxAX. J Biol Chem 287:40350–40359PubMedPubMedCentralCrossRefGoogle Scholar
  13. Brito JA, Denkmann K, Pereira IAC et al (2015) Thiosulfate dehydrogenase (TsdA) from Allochromatium vinosum: Structural and functional insights into thiosulfate oxidation. J Biol Chem 290:9222–9238PubMedPubMedCentralCrossRefGoogle Scholar
  14. Brito JA, Sousa FL, Stelter M et al (2009) Structural and functional insights into sulfide:quinone oxidoreductase. Biochemistry 48:5613–5622PubMedCrossRefGoogle Scholar
  15. Bronstein M, Schütz M, Hauska G et al (2000) Cyanobacterial sulfide-quinone reductase: cloning and heterologous expression. J Bacteriol 182:3336–3344PubMedPubMedCentralCrossRefGoogle Scholar
  16. Brune DC (1989) Sulfur oxidation by phototrophic bacteria. Biochim Biophys Acta 975:189–221PubMedCrossRefGoogle Scholar
  17. Brune DC (1995a) Isolation and characterization of sulfur globule proteins from Chromatium vinosum and Thiocapsa roseopersicina. Arch Microbiol 163:391–399PubMedCrossRefGoogle Scholar
  18. Brune DC (1995b) Sulfur compounds as photosynthetic electron donors. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer Academic Publishers, Dordrecht, pp 847–870Google Scholar
  19. Bryant DA, Costas AMG, Maresca JA et al (2007) Candidatus Chloracidobacterium thermophilum: an aerobic phototrophic Acidobacterium. Science 317:523–526PubMedCrossRefGoogle Scholar
  20. Bryantseva IA, Gorlenko VM, Kompantseva EI et al (1999) Thiorhodospira sibirica gen. nov., sp. nov., a new alkaliphilic purple sulfur bacterium from a Siberian Soda lake. Int J Syst Bacteriol 49:697–703PubMedCrossRefGoogle Scholar
  21. Caumette P, Guyoneaud R, Imhoff JF et al (2004) Thiocapsa marina sp. nov., a novel, okenone-containing, purple sulfur bacterium isolated from brackish coastal and marine environments. Int J Syst Evol Microbiol 54:1031–1036PubMedCrossRefGoogle Scholar
  22. Challacombe JF, Majid S, Deole R et al (2013) Complete genome sequence of Halorhodospira halophila SL1. Stand Genomic Sci 8:206–214PubMedPubMedCentralCrossRefGoogle Scholar
  23. Chan L-K, Morgan-Kiss R, Hanson TE (2009) Functional analysis of three sulfide:quinone oxidoreductase homologs in Chlorobaculum tepidum. J Bacteriol 191:1026–1034PubMedCrossRefGoogle Scholar
  24. Chen ZW, Koh M, van Driessche G et al (1994) The structure of flavocytochrome c sulfide dehydrogenase from a purple phototrophic bacterium. Science 266:430–432PubMedCrossRefGoogle Scholar
  25. Chen L, Ren Y, Lin J et al (2012) Acidithiobacillus caldus sulfur oxidation model based on transcriptome analysis between the wild type and sulfur oxygenase reductase defective mutant. PLoS One 7:e39470PubMedPubMedCentralCrossRefGoogle Scholar
  26. Cherney MM, Zhang Y, Solomonson M et al (2010) Crystal structure of sulfide:quinone oxidoreductase from Acidithiobacillus ferrooxidans: insights into sulfidotrophic respiration and detoxification. J Mol Biol 398:292–305PubMedCrossRefGoogle Scholar
  27. Christensen QH, Cronan JE (2010) Lipoic acid synthesis: a new family of octanoyltransferases generally annotated as lipoate protein ligases. Biochemistry 49:10024–10036PubMedPubMedCentralCrossRefGoogle Scholar
  28. Christensen QH, Martin N, Mansilla MC et al (2011) A novel amidotransferase required for lipoic acid cofactor assembly in Bacillus subtilis. Mol Microbiol 80:350–363PubMedPubMedCentralCrossRefGoogle Scholar
  29. Ciccarelli FD, Doerks T, von Mering C et al (2006) Toward automatic reconstruction of a highly resolved tree of life. Science 311:1283–1287PubMedCrossRefGoogle Scholar
  30. Cort JR, Selan UM, Schulte A et al (2008) Allochromatium vinosum DsrC: solution-state NMR structure, redox properties and interaction with DsrEFH, a protein essential for purple sulfur bacterial sulfur oxidation. J Mol Biol 382:692–707PubMedPubMedCentralCrossRefGoogle Scholar
  31. Cusanovich MA, Bartsch RG (1969) A high potential cytochrome c from Chromatium vinosum chromatophores. Biochim Biophys Acta 189:245–255PubMedCrossRefGoogle Scholar
  32. D’Errico G, Di Salle A, La Cara F et al (2006) Identification and characterization of a novel bacterial sulfite oxidase with no heme binding domain from Deinococcus radiodurans. J Bacteriol 188:694–701PubMedPubMedCentralCrossRefGoogle Scholar
  33. Dahl C (1996) Insertional gene inactivation in a phototrophic sulphur bacterium: APS-reductase-deficient mutants of Chromatium vinosum. Microbiology 142:3363–3372PubMedCrossRefGoogle Scholar
  34. Dahl C (2008) Inorganic sulfur compounds as electron donors in purple sulfur bacteria. In: Hell R, Dahl C, Knaff DB, Leustek T (eds) Sulfur in phototrophic organisms. Springer, Dordrecht, pp 289–317CrossRefGoogle Scholar
  35. Dahl C (2015) Cytoplasmic sulfur trafficking in sulfur-oxidizing prokaryotes. Iubmb Life 67:268–274PubMedCrossRefGoogle Scholar
  36. Dahl C, Friedrich CG, Kletzin A (2008a) Sulfur oxidation in prokaryotes. In: Encyclopedia of Life Sciences (ELS), John Wiley & Sons, Ltd., Chichester, p [DOI:  10.1002/9780470015902.a0021155]
  37. Dahl C, Hell R, Leustek T, Knaff DB (2008b) Introduction to sulfur metabolism in phototrophic organisms. In: Hell R, Dahl C, Knaff DB, Leustek T (eds) Sulfur metabolism in phototrophic organisms. Springer, Dordrecht, pp 1–14CrossRefGoogle Scholar
  38. Dahl C, Schulte A, Stockdreher Y et al (2008c) Structural and molecular genetic insight into a wide-spread bacterial sulfur oxidation pathway. J Mol Biol 384:1287–1300PubMedCrossRefGoogle Scholar
  39. Dahl C, Engels S, Pott-Sperling AS et al (2005) Novel genes of the dsr gene cluster and evidence for close interaction of Dsr proteins during sulfur oxidation in the phototrophic sulfur bacterium Allochromatium vinosum. J Bacteriol 187:1392–1404PubMedPubMedCentralCrossRefGoogle Scholar
  40. Dahl C, Franz B, Hensen D et al (2013) Sulfite oxidation in the purple sulfur bacterium Allochromatium vinosum: identification of SoeABC as a major player and relevance of SoxYZ in the process. Microbiology 159:2626–2638PubMedCrossRefGoogle Scholar
  41. Demmer JK, Huang H, Wang S et al (2015) Insights into flavin-based electron bifurcation via the NADH-dependent reduced ferredoxin:NADP oxidoreductase structure. J Biol Chem 290:21985–21995PubMedPubMedCentralCrossRefGoogle Scholar
  42. Denger K, Smits THM, Cook AM (2006) Genome-enabled analysis of the utilization of taurine as sole source of carbon or of nitrogen by Rhodobacter sphaeroides 2.4.1. Microbiology 152:3197–3206PubMedCrossRefGoogle Scholar
  43. Denger K, Weinitschke S, Hollemeyer K et al (2004) Sulfoacetate generated by Rhodopseudomonas palustris from taurine. Arch Microbiol 182:154–158CrossRefGoogle Scholar
  44. Denkmann K, Grein F, Zigann R et al (2012) Thiosulfate dehydrogenase: a wide-spread unusual acidophilic c-type cytochrome. Environ Microbiol 14:2673–2688PubMedCrossRefGoogle Scholar
  45. Dhillon A, Goswami S, Riley M et al (2005) Domain evolution and functional diversification of sulfite reductases. Astrobiology 5:18–29PubMedCrossRefGoogle Scholar
  46. Eddie BJ, Hanson TE (2013) Chlorobaculum tepidum TLS displays a complex transcriptional response to sulfide addition. J Bacteriol 195:399–408PubMedPubMedCentralCrossRefGoogle Scholar
  47. Ehrenfeld N, Levicán G, Parada P (2013) Heterodisulfide reductase from Acdidithiobacilli is a key component involved in metabolism of reduced inorganic sulfur compounds. Adv Mater Res 825:194–197CrossRefGoogle Scholar
  48. Falkenby LG, Szymanska M, Holkenbrink C et al (2011) Quantitative proteomics of Chlorobaculum tepidum: insights into the sulfur metabolism of a phototrophic green sulfur bacterium. FEMS Microbiol Lett 323:142–150PubMedCrossRefGoogle Scholar
  49. Foster BA, Thomas SM, Mahr JA et al (1994) Cloning and sequencing of ATP sulfurylase from Penicillium chrysogenum: identification of a likely allosteric domain. J Biol Chem 269:19777–19786PubMedGoogle Scholar
  50. Franz B, Gehrke T, Lichtenberg H et al (2009) Unexpected extracellular and intracellular sulfur species during growth of Allochromatium vinosum with reduced sulfur compounds. Microbiology 155:2766–2774PubMedCrossRefGoogle Scholar
  51. Franz B, Lichtenberg H, Hormes J et al (2007) Utilization of solid “elemental” sulfur by the phototrophic purple sulfur bacterium Allochromatium vinosum: a sulfur K-edge XANES spectroscopy study. Microbiology 153:1268–1274PubMedCrossRefGoogle Scholar
  52. Friedrich CG, Bardischewsky F, Rother D et al (2005) Prokaryotic sulfur oxidation. Curr Opin Microbiol 8:253–259PubMedCrossRefGoogle Scholar
  53. Friedrich CG, Rother D, Bardischewsky F et al (2001) Oxidation of reduced inorganic sulfur compounds by bacteria: emergence of a common mechanism? Appl Environ Microbiol 67:2873–2882PubMedPubMedCentralCrossRefGoogle Scholar
  54. Frigaard N-U, Bryant DA (2008a) Genomic and evolutionary perspectives on sulfur metabolism in green sulfur bacteria. In: Dahl C, Friedrich CG (eds) Microbial sulfur metabolism. Springer, Heidelberg, Heidelberg, pp 60–76CrossRefGoogle Scholar
  55. Frigaard N-U, Bryant DA (2008b) Genomic insights into the sulfur metabolism of phototrophic green sulfur bacteria. In: Hell R, Dahl C, Knaff DB, Leustek T (eds) Sulfur metabolism in phototrophic organisms. Springer, Dordrecht, pp 337–355CrossRefGoogle Scholar
  56. Frigaard N-U, Dahl C (2009) Sulfur metabolism in phototrophic sulfur bacteria. Adv Microb Physiol 54:103–200PubMedCrossRefGoogle Scholar
  57. Funane K, Iwahashi H, Nakamura T (1987) Metabolism of S-sulfocysteine in Salmonella typhimurium. Role of thioredoxin in the reduction of S-sulfocysteine. Agric Biol Chem 51:1247–1256Google Scholar
  58. Gregersen LH, Bryant DA, Frigaard N-U (2011) Mechanisms and evolution of oxidative sulfur metabolism in green sulfur bacteria. Front Microbiol 2:116. doi: 10.3389/fmicb.2011.00116 PubMedPubMedCentralCrossRefGoogle Scholar
  59. Grein F, Pereira IAC, Dahl C (2010a) The Allochromatium vinsosum DsrMKJOP transmembrane complex: biochemical characterization of individual components aids understanding of complex function in vivo. J Bacteriol 192:6369–6377PubMedPubMedCentralCrossRefGoogle Scholar
  60. Grein F, Ramos AR, Venceslau SS et al (2013) Unifying concepts in anaerobic respiration: Insights from dissimilatory sulfur metabolism. Biochim Biophys Acta 1827:145–160PubMedCrossRefGoogle Scholar
  61. Grein F, Venceslau SS, Schneider L et al (2010b) DsrJ, an essential part of the DsrMKJOP complex in the purple sulfur bacterium Allochromatium vinosum, is an unusual triheme cytochrome c. Biochemistry 49:8290–8299PubMedCrossRefGoogle Scholar
  62. Griesbeck C, Schütz M, Schödl T et al (2002) Mechanism of sulfide-quinone oxidoreductase investigated using site-directed mutagenesis and sulfur analysis. Biochemistry 41:11552–11565PubMedCrossRefGoogle Scholar
  63. Guo X, Yin H, Liang Y et al (2014) Comparative genome analysis reveals metabolic versatility and environmental adaptations of Sulfobacillus thermosulfidooxidans strain ST. PLoS One 9:e99417PubMedPubMedCentralCrossRefGoogle Scholar
  64. Hamilton TL, Bovee RJ, Thiel V et al (2014) Coupled reductive and oxidative sulfur cycling in the phototrophic plate of a meromictic lake. Geobiology 12:451–468PubMedCrossRefGoogle Scholar
  65. Hedderich R, Hamann N, Bennati M (2005) Heterodisulfide reductase from methanogenic archaea: a new catalytic role for an iron-sulfur cluster. Biol Chem 386:961–970PubMedCrossRefGoogle Scholar
  66. Heinzinger NK, Fujimoto SY, Clark MA et al (1995) Sequence analysis of the phs operon in Salmonella typhimurium and the contribution of thiosulfate reduction to anaerobic energy metabolism. J Bacteriol 177:2813–2820PubMedPubMedCentralCrossRefGoogle Scholar
  67. Hensel G, Trüper HG (1976) Cysteine and S-sulfocysteine biosynthesis in phototrophic bacteria. Arch Microbiol 109:101–103PubMedCrossRefGoogle Scholar
  68. Hensel M, Hinsley AP, Nikolaus T et al (1999) The genetic basis of tetrathionate respiration in Salmonella typhimurium. Mol Microbiol 32:275–287PubMedCrossRefGoogle Scholar
  69. Hensen D, Sperling D, Trüper HG et al (2006) Thiosulphate oxidation in the phototrophic sulphur bacterium Allochromatium vinosum. Mol Microbiol 62:794–810PubMedCrossRefGoogle Scholar
  70. Hipp WM, Pott AS, Thum-Schmitz N et al (1997) Towards the phylogeny of APS reductases and sirohaem sulfite reductases in sulfate-reducing and sulfur-oxidizing prokaryotes. Microbiology 143:2891–2902PubMedCrossRefGoogle Scholar
  71. Imhoff JF (2001) Transfer of Pfennigia purpurea Tindall 1999 (Amoebobacter purpureus Eichler and Pfennig 1988) to the genus Lamprocystis as Lamprocystis purpurea comb. nov. Int J Syst Evol Microbiol 51:1699–1701PubMedCrossRefGoogle Scholar
  72. Imhoff JF (2003) Phylogenetic taxonomy of the family Chlorobiaceae on the basis of 16S rRNA and fmo (Fenna-Matthews-Olson protein) gene sequences. Int J Syst Evol Microbiol 53:941–951PubMedCrossRefGoogle Scholar
  73. Imhoff JF, Pfennig N (2001) Thioflavicoccus mobilis gen. nov., sp nov., a novel purple sulfur bacterium with bacteriochlorophyll b. Int J Syst Evol Microbiol 51:105–110PubMedCrossRefGoogle Scholar
  74. Imhoff JF, Süling J (1996) The phylogenetic relationship among Ectothiorhodospiraceae: a reevalution of their taxonomy on the basis of 16S rDNA analyses. Arch Microbiol 165:106–113PubMedCrossRefGoogle Scholar
  75. Imhoff JF, Hiraishi A, Süling J (2005) Anoxygenic phototrophic purple bacteria. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology. Springer, New York, pp 119–132CrossRefGoogle Scholar
  76. Imhoff JF, Süling J, Petri R (1998) Phylogenetic relationships among the Chromatiaceae, their taxonomic reclassification and description of the new genera Allochromatium, Halochromatium, Isochromatium, Marichromatium, Thiococcus, Thiohalocapsa, and Thermochromatium. Int J Syst Bacteriol 48:1129–1143PubMedCrossRefGoogle Scholar
  77. Jormakka M, Yokoyama K, Yano T et al (2008) Molecular mechanism of energy conservation in polysulfide respiration. Nat Struct Mol Biol 15:730–737PubMedPubMedCentralCrossRefGoogle Scholar
  78. Kappler U, Bailey S (2005) Molecular basis of intramolecular electron transfer in sulfite-oxidizing enzymes is revealed by high resolution structure of a heterodimeric complex of the catalytic molybdopterin subunit and a c-type cytochrome subunit. J Biol Chem 280:24999–25007PubMedCrossRefGoogle Scholar
  79. Kappler U, Schäfer H (2014) Transformations of dimethylsulfide. Met Ions Life Sci 14:279–313PubMedCrossRefGoogle Scholar
  80. Kappler U, Bennett B, Rethmeier J et al (2000) Sulfite: cytochrome c oxidoreductase from Thiobacillus novellus—Purification, characterization, and molecular biology of a heterodimeric member of the sulfite oxidase family. J Biol Chem 275:13202–13212PubMedCrossRefGoogle Scholar
  81. Kappler U, Bernhardt PV, Kilmartin J et al (2008) SoxAX cytochromes, a new type of heme copper protein involved in bacterial energy generation from sulfur compounds. J Biol Chem 283:22206–22214PubMedCrossRefGoogle Scholar
  82. Khanna S, Nicholas DJD (1982) Utilization of tetrathionate and 35S-labelled thiosulphate by washed cells of Chlorobium vibrioforme f. sp. thiosulfatophilum. J Gen Microbiol 128:1027–1034Google Scholar
  83. Koblizek M (2015) Ecology of aerobic anoxygenic phototrophs in aquatic environments. FEMS Microbiol Rev 39:854–870PubMedCrossRefGoogle Scholar
  84. Kostanjevecki V, Brige A, Meyer TE et al (2000) A membrane-bound flavocytochrome c-sulfide dehydrogenase from the purple phototrophic sulfur bacterium Ectothiorhodospira vacuolata. J Bacteriol 182:3097–3103PubMedPubMedCentralCrossRefGoogle Scholar
  85. Krafft T, Bokranz M, Klimmek O et al (1992) Cloning and nucleotide sequence of the psrA gene of Wolinella succinogenes polysulphide reductase. Eur J Biochem 206:503–510PubMedCrossRefGoogle Scholar
  86. Kredich NM (1992) The molecular basis for positive regulation of cys promoters in Salmonella typhimurium and Escherichia coli. Mol Microbiol 6:2747–2753PubMedCrossRefGoogle Scholar
  87. Kredich NM (1996) Biosynthesis of cysteine. In: Neidhardt FC (ed) Escherichia coli and Salmonella typhimurium. Cellular and molecular biology. American Society for Microbiology, Washington, pp 514–527Google Scholar
  88. Kulp TR, Hoeft SE, Asao M et al (2008) Arsenic(III) fuels anoxygenic photosynthesis in hot spring biofilms from mono lake, California. Science 321:967–970PubMedCrossRefGoogle Scholar
  89. Kurth J, Dahl C, Butt JN (2015) Catalytic protein film electrochemistry provides a direct measure of the tetrathionate/thiosulfate reduction potential. J Am Chem Soc 137:13232–13235PubMedCrossRefGoogle Scholar
  90. Laska S, Lottspeich F, Kletzin A (2003) Membrane-bound hydrogenase and sulfur reductase of the hyperthermophilic and acidophilic archaeon Acidianus ambivalens. Microbiology 149:2357–2371PubMedCrossRefGoogle Scholar
  91. Latorre M, Ehrenfeld N, Cortes MP et al (2016) Global transcriptional responses of Acidithiobacillus ferrooxidans Wenelen under different sulfide minerals. Bioresour Technol 200:29–34PubMedCrossRefGoogle Scholar
  92. Leustek T, Saito K (1999) Sulfate transport and assimilation in plants. Plant Physiol 120:637–643PubMedPubMedCentralCrossRefGoogle Scholar
  93. Leyh TS (1993) The physical biochemistry and molecular genetics of sulfate activation. Crit Rev Biochem Mol Biol 28:515–542PubMedCrossRefGoogle Scholar
  94. Liu Y-W, Denkmann K, Kosciow K et al (2013) Tetrathionate stimulated growth of Campylobacter jejuni identifies TsdA as a new type of bi-functional tetrathionate reductase that is widely distributed in bacteria. Mol Microbiol 88:188CrossRefGoogle Scholar
  95. Lu W-P, Kelly DP (1988) Respiration-driven proton translocation in Thiobacillus versutus and the role of the periplasmic thiosulphate-oxidizing enzyme system. Arch Microbiol 149:297–302CrossRefGoogle Scholar
  96. Lübbe YJ, Youn H-S, Timkovich R et al (2006) Siro(haem)amide in Allochromatium vinosum and relevance of DsrL and DsrN, a homolog of cobyrinic acid a,c diamide synthase for sulphur oxidation. FEMS Microbiol Lett 261:194–202PubMedCrossRefGoogle Scholar
  97. MacRae IJ, Segel IH, Fisher AJ (2001) Crystal structure of ATP sulfurylase from Penicillium chrysogenum: insights into the allosteric regulation of sulfate assimilation. Biochemistry 40:6795–6804PubMedCrossRefGoogle Scholar
  98. Mangold S, Valdés J, Holmes DS et al (2011) Sulfur metabolism in the extreme acidophile Acidithiobacillus caldus. Front Microbiol. doi: 10.3389/fmcib.2011.00017 PubMedPubMedCentralGoogle Scholar
  99. Marcia M, Ermler U, Peng GH et al (2010a) A new structure-based classification of sulfide:quinone oxidoreductases. Proteins: Struct, Funct, Bioinf 78:1073–1083CrossRefGoogle Scholar
  100. Marcia M, Langer JD, Parcej D et al (2010b) Characterizing a monotopic membrane enzyme. Biochemical, enzymatic and crystallization studies on Aquifex aeolicus sulfide:quinone oxidoreductase. Biochim Biophys Acta, Biomembr 1798:2114–2123CrossRefGoogle Scholar
  101. Marcia M, Ermler U, Peng GH et al (2009) The structure of Aquifex aeolicus sulfide:quinone oxidoreductase, a basis to understand sulfide detoxification and respiration. Proc Natl Acad Sci U S A 106:9625–9630PubMedPubMedCentralCrossRefGoogle Scholar
  102. Marnocha CL, Levy AT, Powell DH et al (2016) Mechanisms of extracellular S(0) globule production and degradation in Chlorobaculum tepidum via dynamic cell-globule interactions. Microbiology 162(7):1125–1134PubMedCrossRefGoogle Scholar
  103. Meyer TE, Cusanovich MA (2003) Discovery and characterization of electron transfer proteins in the photosynthetic bacteria. Photosynth Res 76:111–126PubMedCrossRefGoogle Scholar
  104. Meyer B, Kuever J (2007) Molecular analysis of the distribution and phylogeny of dissimilatory adenosine-5′-phosphosulfate reductase-encoding genes (aprBA) among sulfur-oxidizing prokaryotes. Microbiology 153:3478–3498PubMedCrossRefGoogle Scholar
  105. Meyer B, Imhoff JF, Kuever J (2007) Molecular analysis of the distribution and phylogeny of the soxB gene among sulfur-oxidizing bacteria—evolution of the Sox sulfur oxidation enzyme system. Environ Microbiol 9:2957–2977PubMedCrossRefGoogle Scholar
  106. Middelburg J (2000) The geochemical sulfur cycle. In: Lens P, Hulshoff Pol W (eds) Environmental technologies to treat sulfur pollution. IWA Publishing, London, pp 33–46Google Scholar
  107. Müller FH, Bandeiras TM, Urich T et al (2004) Coupling of the pathway of sulphur oxidation to dioxygen reduction: characterization of a novel membrane-bound thiosulphate:quinone oxidoreductase. Mol Microbiol 53:1147–1160PubMedCrossRefGoogle Scholar
  108. Nakatani T, Ohtsu I, Nonaka G et al (2012) Enhancement of thioredoxin/glutaredoxin-mediated L-cysteine synthesis from S-sulfocysteine increases L-cysteine production in Escherichia coli. Microb Cell Fact 11:62PubMedPubMedCentralCrossRefGoogle Scholar
  109. Neumann S, Wynen A, Trüper HG et al (2000) Characterization of the cys gene locus from Allochromatium vinosum indicates an unusual sulfate assimilation pathway. Mol Biol Rep 27:27–33PubMedCrossRefGoogle Scholar
  110. Ogawa T, Furusawa T, Nomura R et al (2008) SoxAX binding protein, a novel component of the thiosulfate-oxidizing multienzyme system in the green sulfur bacterium Chlorobium tepidum. J Bacteriol 190:6097–6110PubMedPubMedCentralCrossRefGoogle Scholar
  111. Osorio H, Mangold S, Denis Y et al (2013) Anaerobic sulfur metabolism coupled to dissimilatory iron reduction in the extremophile Acidithiobacillus ferrooxidans. Appl Environ Microbiol 79:2172–2181PubMedPubMedCentralCrossRefGoogle Scholar
  112. Ouyang J, Liu Q, Li B et al (2013) Proteomic analysis of differential protein expression in Acidithiobacillus ferrooxidans grown on ferrous iron or elemental sulfur. Indian J Microbiol 53:56–62PubMedCrossRefGoogle Scholar
  113. Parey K, Demmer U, Warkentin E et al (2013) Structural, biochemical and genetic characterization of ATP sulfurylase from Allochromatium vinosum. PLoS One 8:e74707PubMedPubMedCentralCrossRefGoogle Scholar
  114. Pattaragulwanit K, Brune DC, Trüper HG et al (1998) Molecular genetic evidence for extracytoplasmic localization of sulfur globules in Chromatium vinosum. Arch Microbiol 169:434–444PubMedCrossRefGoogle Scholar
  115. Pires RH, Lourenco AI, Morais F et al (2003) A novel membrane-bound respiratory complex from Desulfovibrio desulfuricans ATCC 27774. Biochim Biophys Acta 1605:67–82PubMedCrossRefGoogle Scholar
  116. Pires RH, Venceslau SS, Morais F et al (2006) Characterization of the Desulfovibrio desulfuricans ATCC 27774 DsrMKJOP complex—a membrane-bound redox complex involved in the sulfate respiratory pathway. Biochemistry 45:249–262PubMedCrossRefGoogle Scholar
  117. Podgorsek L, Imhoff JF (1999) Tetrathionate production by sulfur oxidizing bacteria and the role of tetrathionate in the sulfur cycle of Baltic Sea sediments. Aquat Microb Ecol 17:255–265CrossRefGoogle Scholar
  118. Pott AS, Dahl C (1998) Sirohaem-sulfite reductase and other proteins encoded in the dsr locus of Chromatium vinosum are involved in the oxidation of intracellular sulfur. Microbiology 144:1881–1894PubMedCrossRefGoogle Scholar
  119. Prange A, Chauvistré R, Modrow H et al (2002) Quantitative speciation of sulfur in bacterial sulfur globules: X-ray absorption spectroscopy reveals at least three different speciations of sulfur. Microbiology 148:267–276PubMedCrossRefGoogle Scholar
  120. Prange A, Engelhardt H, Trüper HG et al (2004) The role of the sulfur globule proteins of Allochromatium vinosum: mutagenesis of the sulfur globule protein genes and expression studies by real-time RT PCR. Arch Microbiol 182:165–174PubMedCrossRefGoogle Scholar
  121. Quatrini R, Appia-Ayme C, Denis Y et al (2006) Insights into the iron and sulfur energetic metabolism of Acidithiobacillus ferrooxidans by microarray transcriptome profiling. Hydrometallurgy 83:263–272CrossRefGoogle Scholar
  122. Quatrini R, Appia-Ayme C, Denis Y et al (2009) Extending the models for iron and sulfur oxidation in the extreme acidophile Acidithiobacillus ferrooxidans. BMC Genomics 10:394PubMedPubMedCentralCrossRefGoogle Scholar
  123. Quentmeier A, Friedrich CG (2001) The cysteine residue of the SoxY protein as the active site of protein-bound sulfur oxidation of Paracoccus pantotrophus GB17. FEBS Lett 503:168–172PubMedCrossRefGoogle Scholar
  124. Ramos AR, Keller KL, Wall JD et al (2012) The membrane QmoABC complex interacts directly with the dissimilatory adenosine 5′-phosphosulfate reductase in sulfate reducing bacteria. Front Microbiol 3:137PubMedPubMedCentralGoogle Scholar
  125. Raymond JC, Sistrom WR (1969) Ectothiorhodospira halophila—a new species of the genus Ectothiorhodospira. Arch Mikrobiol 69:121–126PubMedCrossRefGoogle Scholar
  126. Reijerse EJ, Sommerhalter M, Hellwig P et al (2007) The unusal redox centers of SoxXA, a novel c-type heme-enzyme essential for chemotrophic sulfur-oxidation of Paracoccus pantotrophus. Biochemistry 46:7804–7810PubMedCrossRefGoogle Scholar
  127. Reinartz M, Tschäpe J, Brüser T et al (1998) Sulfide oxidation in the phototrophic sulfur bacterium Chromatium vinosum. Arch Microbiol 170:59–68PubMedCrossRefGoogle Scholar
  128. Rodriguez J, Hiras J, Hanson TE (2011) Sulfite oxidation in Chlorobaculum tepidum. Front Microbiol 2:112. doi: 10.3389/fmcib.2011.00112 PubMedPubMedCentralCrossRefGoogle Scholar
  129. Sanchez O, Ferrera I, Dahl C et al (2001) In vivo role of APS reductase in the purple sulfur bacterium Allochromatium vinosum. Arch Microbiol 176:301–305PubMedCrossRefGoogle Scholar
  130. Sander J, Dahl C (2009) Metabolism of inorganic sulfur compounds in purple bacteria. In: Hunter CN, Daldal F, Thurnauer MC, Beatty JT (eds) Purple bacteria. Springer, Dordrecht, pp 595–622CrossRefGoogle Scholar
  131. Sander J, Engels-Schwarzlose S, Dahl C (2006) Importance of the DsrMKJOP complex for sulfur oxidation in Allochromatium vinosum and phylogenetic analysis of related complexes in other prokaryotes. Arch Microbiol 186:357–366PubMedCrossRefGoogle Scholar
  132. Santos AA, Venceslau SS, Grein F et al (2015) A protein trisulfide couples dissimilatory sulfate reduction to energy conservation. Science 350:1541–1545PubMedCrossRefGoogle Scholar
  133. Sauvé V, Bruno S, Berks BC et al (2007) The SoxYZ complex carries sulfur cycle intermediates on a peptide swinging arm. J Biol Chem 282:23194–23204PubMedCrossRefGoogle Scholar
  134. Sauvé V, Roversi P, Leath KJ et al (2009) Mechanism for the hydrolysis of a sulfur-sulfur bond based on the crystal structure of the thiosulfohydrolase SoxB. J Biol Chem 284:21707–21718PubMedPubMedCentralCrossRefGoogle Scholar
  135. Schütz M, Maldener I, Griesbeck C et al (1999) Sulfide-quinone reductase from Rhodobacter capsulatus: requirement for growth, periplasmic localization, and extension of gene sequence analysis. J Bacteriol 181:6516–6523PubMedPubMedCentralGoogle Scholar
  136. Schütz M, Shahak Y, Padan E et al (1997) Sulfide-quinone reductase from Rhodobacter capsulatus. J Biol Chem 272:9890–9894PubMedCrossRefGoogle Scholar
  137. Sekowska A, Kung HF, Danchin A (2000) Sulfur metabolism in Escherichia coli and related bacteria: facts and fiction. J Mol Microbiol Biotechnol 2:145–177PubMedGoogle Scholar
  138. Shahak Y, Hauska G (2008) Sulfide oxidation from cyanobacteria to humans: sulfide-quinone oxidoreductase (SQR). In: Hell R, Dahl C, Knaff DB, Leustek T (eds) Sulfur metabolism in phototrophic organisms. Springer, Dordrecht, pp 319–335CrossRefGoogle Scholar
  139. Shuman KE, Hanson TE (2016) A sulfide:quinone oxidoreductase from Chlorobaculum tepidum displays unusual kinetic properties. FEMS Microbiol Lett 363Google Scholar
  140. Simon J, Kern M (2008) Quinone-reactive proteins devoid of haem b form widespread membrane-bound electron transport modules in bacterial respiration. Biochem Soc Trans 36:1011–1016PubMedCrossRefGoogle Scholar
  141. Simon J, Kroneck PM (2013) Microbial sulfite respiration. Adv Microb Physiol 62:45–117PubMedCrossRefGoogle Scholar
  142. Singh KS, Kirksey J, Hoff WD et al (2014) Draft genome sequence of the extremely halophilic phototrophic purple sulfur bacterium Halorhodospira halochloris. J Genet 2:118–120Google Scholar
  143. Sirko A, Zatyka M, Sadowy E et al (1995) Sulfate and thiosulfate transport in Escherichia coli K-12: evidence for a functional overlapping of sulfate- and thiosulfate-binding proteins. J Bacteriol 177:4134–4136PubMedPubMedCentralCrossRefGoogle Scholar
  144. Smith AJ, Lascelles J (1966) Thiosulphate metabolism and rhodanese in Chromatium sp. strain D. J Gen Microbiol 42:357–370PubMedCrossRefGoogle Scholar
  145. Sorokin DY (2003) Oxidation of inorganic sulfur compounds by obligately organotrophic bacteria. Microbiology 72:641–653CrossRefGoogle Scholar
  146. Sorokin DY, Tourova TP, Kuznetsov BB et al (2000) Roseinatronobacter thiooxidans gen. nov., sp. nov., a new alkaliphilic aerobic bacteriochlorophyll a—containing bacterium isolated from a soda lake. Microbiology 69:75–82CrossRefGoogle Scholar
  147. Spalding MD, Prigge ST (2010) Lipoic acid metabolism in microbial pathogens. Microbiol Mol Biol Rev 74:200–228PubMedPubMedCentralCrossRefGoogle Scholar
  148. Spring S (2014) Function and evolution of the Sox multienzyme complex in the marine Gammaproteobacterium Congregibacter litoralis. ISRN Microbiol 2014:597418PubMedPubMedCentralCrossRefGoogle Scholar
  149. Steudel R, Holdt G, Visscher PT et al (1990) Search for polythionates in cultures of Chromatium vinosum after sulfide incubation. Arch Microbiol 155:432–437CrossRefGoogle Scholar
  150. Stockdreher Y, Sturm M, Josten M et al (2014) New proteins involved in sulfur trafficking in the cytoplasm of Allochromatium vinosum. J Biol Chem 289:12390–12403PubMedPubMedCentralCrossRefGoogle Scholar
  151. Stockdreher Y, Venceslau SS, Josten M et al (2012) Cytoplasmic sulfurtransferases in the purple sulfur bacterium Allochromatium vinosum: evidence for sulfur transfer from DsrEFH to DsrC. PLoS One 7:e40785PubMedPubMedCentralCrossRefGoogle Scholar
  152. Tank M, Bryant DA (2015a) Chloracidobacterium thermophilum gen. nov., sp. nov.: an anoxygenic microaerophilic chlorophotoheterotrophic acidobacterium. Int J Syst Evol Microbiol 65:1426–1430PubMedCrossRefGoogle Scholar
  153. Tank M, Bryant DA (2015b) Nutrient requirements and growth physiology of the photoheterotrophic Acidobacterium, Chloracidobacterium thermophilum. Front Microbiol 6:226PubMedPubMedCentralCrossRefGoogle Scholar
  154. Thauer RK, Kaster AK, Seedorf H et al (2008) Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 6:579–591PubMedCrossRefGoogle Scholar
  155. Then J, Trüper HG (1981) The role of thiosulfate in sulfur metabolism of Rhodopseudomonas globiformis. Arch Microbiol 130:143–146CrossRefGoogle Scholar
  156. Venceslau SS, Stockdreher Y, Dahl C et al (2014) The “bacterial heterodisulfide” DsrC is a key protein in dissimilatory sulfur metabolism. Biochim Biophys Acta 1837:1148–1164PubMedCrossRefGoogle Scholar
  157. Visscher PT, Taylor BF (1993) Organic thiols as organolithotrophic substrates for growth of phototrophic bacteria. Appl Environ Microbiol 59:93–96PubMedPubMedCentralGoogle Scholar
  158. Weissgerber T, Sylvester M, Kröninger L et al (2014a) A comparative quantitative proteome study identifies new proteins relevant for sulfur oxidation in the purple sulfur bacterium Allochromatium vinosum. Appl Environ Microbiol 80:2279–2292PubMedPubMedCentralCrossRefGoogle Scholar
  159. Weissgerber T, Watanabe M, Hoefgen R et al (2014b) Metabolomic profiling of the purple sulfur bacterium Allochromatium vinosum during growth on different reduced sulfur compounds and malate. Metabolomics 10:1094–1112PubMedPubMedCentralCrossRefGoogle Scholar
  160. Weissgerber T, Dobler N, Polen T et al (2013) Genome-wide transcriptional profiling of the purple sulfur bacterium Allochromatium vinosum DSM 180T during growth on different reduced sulfur compounds. J Bacteriol 195:4231–4245PubMedPubMedCentralCrossRefGoogle Scholar
  161. Weissgerber T, Zigann R, Bruce D et al (2011) Complete genome sequence of Allochromatium vinosum DSM 180T. Stand Genomic Sci 5:311–330. doi: 10.4056/sigs.2335270 PubMedPubMedCentralCrossRefGoogle Scholar
  162. Welte C, Hafner S, Krätzer C et al (2009) Interaction between Sox proteins of two physiologically distinct bacteria and a new protein involved in thiosulfate oxidation. FEBS Lett 583:1281–1286PubMedCrossRefGoogle Scholar
  163. Wentzien S, Sand W, Albertsen A et al (1994) Thiosulfate and tetrathionate degradation as well as biofilm generation by Thiobacillus intermedius and Thiobacillus versutus studied by microcalorimetry, HPLC, and ion-pair chromatography. Arch Microbiol 161:116–125CrossRefGoogle Scholar
  164. Wilson JJ, Kappler U (2009) Sulfite oxidation in Sinorhizobium meliloti. Biochim Biophys Acta 1787:1516–1525PubMedCrossRefGoogle Scholar
  165. Woodin TS, Segel IH (1968) Glutathione reductase-dependent metabolism of cysteine-S-sulfate by Penicillium chrysogenum. Biochim Biophys Acta 167:78–88PubMedCrossRefGoogle Scholar
  166. Yurkov VV, Krasil’nikova EN, Gorlenko VM (1994) Thiosulfate metabolism in the aerobic bacteriochlorophyll-a-containing bacteria Erythromicrobium hydrolyticum and Roseococcus thiosulfatophilus. Microbiology 63:91–94Google Scholar
  167. Zaar A, Fuchs G, Golecki JR et al (2003) A new purple sulfur bacterium isolated from a littoral microbial mat, Thiorhodococcus drewsii sp. nov. Arch Microbiol 179:174–183PubMedCrossRefGoogle Scholar
  168. Zander U, Faust A, Klink BU et al (2010) Structural basis for the oxidation of protein-bound sulfur by the sulfur cycle molybdohemo-enzyme sulfane dehydrogenase SoxCD. J Biol Chem 286:8349–8360PubMedPubMedCentralCrossRefGoogle Scholar
  169. Zeng Y, Feng F, Medova H et al (2014) Functional type 2 photosynthetic reaction centers found in the rare bacterial phylum Gemmatimonadetes. Proc Natl Acad Sci U S A 111:7795–7800PubMedPubMedCentralCrossRefGoogle Scholar
  170. Zeng Y, Selyanin V, Lukes M et al (2015) Characterization of the microaerophilic, bacteriochlorophyll a-containing bacterium Gemmatimonas phototrophica sp. nov., and emended descriptions of the genus Gemmatimonas and Gemmatimonas aurantiaca. Int J Syst Evol Microbiol 65:2410–2419PubMedCrossRefGoogle Scholar
  171. Zhang Y, Weiner JH (2014) Characterization of the kinetics and electron paramagnetic resonance spectroscopic properties of Acidithiobacillus ferrooxidans sulfide:quinone oxidoreductase (SQR). Arch Biochem Biophys 564:110–119PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität BonnBonnGermany

Personalised recommendations