Utilizing Clonal Selection Theory Inspired Algorithms and K-Means Clustering for Predicting OPEC Carbon Dioxide Emissions from Petroleum Consumption

  • Ayodele LasisiEmail author
  • Rozaida Ghazali
  • Haruna Chiroma
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 549)


The prediction of carbon dioxide (CO2) emissions from petroleum consumption inspired and motivated this research. Over the years, the rate of emissions of CO2 continues to multiply, resulting in global warming. This paper thus proposes the use of clonal selection theory inspired algorithms; CLONALG and AIRS to forecast global CO2 emissions. The K-means algorithm divides the data into groups of similar and meaningful patterns. Comparative simulations with multi-layer Perceptron, IBk, fuzzy-rough nearest neighbor, and vaguely quantified nearest neighbor reveal that the CLONALG and AIRS produced outstanding results, and are able to generate highest detection rates and lowest false alarm rates. As such, gathering useful information with the accurate prediction of CO2 emissions can help to reduce the emission of CO2 contributions to global warming which assist in policies on climate change.


Clonal selection algorithm Artificial immune recognition system Clustering algorithm Carbon dioxide emissions 



This work is supported by the Office for Research, Innovation, Commercialization, and Consultancy Management (ORICC), Universiti Tun Hussein Onn Malaysia (UTHM), and Ministry of Higher Education (MOHE) Malaysia under the Fundamental Research Grant Scheme (FRGS) Vote No. 1235.


  1. 1.
    Sari, R., Soytas, U.: Are global warming and economic growth compatible? Evidence from five OPEC countries? Appl. Energy 86, 1887–1893 (2009)CrossRefGoogle Scholar
  2. 2.
    Chen, T., Wang, Y.C.: A fuzzy-neural approach for global CO2 concentration forecasting. Intell. Data Anal. 15, 763–777 (2011)Google Scholar
  3. 3.
    Chen, T.: A collaborative fuzzy-neural system for global CO2 concentration forecasting. Int. J. Innov. Comput. Inf. Control 8, 7679–7696 (2012)Google Scholar
  4. 4.
    Tang, N., Zhang, D.-J.: Application of a load forecasting model based on improved grey neural network in the smart grid. Energy Procedia. 12, 180–184 (2011)CrossRefGoogle Scholar
  5. 5.
    de Castro, L.N., von Zuben, F.J.: The clonal selection algorithm with engineering applications. In: Proceedings of GECCO, pp. 36–39 (2000)Google Scholar
  6. 6.
    Watkins, A.: A resource limited artificial immune classifier (2001)Google Scholar
  7. 7.
    Lasisi, A., Ghazali, R., Herawan, T., Lasisi, F., Deris, M.M.: Knowledge extraction of agricultural data using artificial immune system. In: 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), pp. 1653–1658 (2015)Google Scholar
  8. 8.
    Bersini, H., Varela, F.J.: Hints for adaptive problem solving gleaned from immune networks. In: Schwefel, H.P., Männer, R. (eds.) PPSN 1990. LNCS, vol. 496, pp. 343–354. Springer, Berlin, Heidelberg (1991). doi: 10.1007/BFb0029775 CrossRefGoogle Scholar
  9. 9.
    Forrest, S., Perelson, A.S., Allen, L., Cherukuri, R.: Self-nonself discrimination in a computer. In: 1994 Proceedings of IEEE Computer Society Symposium on Research in Security and Privacy, 1994, pp. 202–212 (1994)Google Scholar
  10. 10.
    Lasisi, A., Ghazali, R., Herawan, T.: Negative selection algorithm: a survey on the epistemology of generating detectors. In: Herawan, T., Deris, M.M., Abawajy, J. (eds.). LNEE, vol. 285, pp. 167–176. Springer, Singapore (2014). doi: 10.1007/978-981-4585-18-7_20 CrossRefGoogle Scholar
  11. 11.
    Lasisi, A., Ghazali, R., Herawan, T.: Comparative performance analysis of negative selection algorithm with immune and classification algorithms. In: Herawan, T., Ghazali, R., Deris, M.M. (eds.). AISC, vol. 287, pp. 441–452. Springer, Cham (2014). doi: 10.1007/978-3-319-07692-8_42 CrossRefGoogle Scholar
  12. 12.
    Burnet, S.F.M.: The Clonal Selection Theory of Acquired Immunity. University Press Cambridge, Cambridge (1959)CrossRefGoogle Scholar
  13. 13.
    Everitt, B.S., Landau, S., Leese, M.: Cluster analysis. Arnold, London (2001)zbMATHGoogle Scholar
  14. 14.
    Xu, R., Wunsch, D.: Survey of clustering algorithms. IEEE Trans. Neural Netw. 16, 645–678 (2005)CrossRefGoogle Scholar
  15. 15.
    Jain, A.K.: Data clustering: 50 years beyond K-means. Pattern Recogn. Lett. 31, 651–666 (2010)CrossRefGoogle Scholar
  16. 16.
    Fine, T.L.: Feedforward Neural Network Methodology. Springer Science & Business Media, New York (1999)zbMATHGoogle Scholar
  17. 17.
    Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Mach. Learn. 6, 37–66 (1991)Google Scholar
  18. 18.
    Jensen, R., Cornelis, C.: A new approach to fuzzy-rough nearest neighbour classification. In: Chan, C.C., Grzymala-Busse, J., Ziarko, W. (eds.) Rough Sets and Current Trends in Computing, pp. 310–319. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Jensen, R., Cornelis, C.: Fuzzy-rough nearest neighbour classification and prediction. Theor. Comput. Sci. 412, 5871–5884 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Energy Information Administration of the US Department of Energy (2014)Google Scholar
  21. 21.
    Chiroma, H., Abdulkareem, S., Abubakar, A., Usman, M.J.: Computational intelligence techniques with application to crude oil price projection: a literature survey from 2001–2012. Neural Netw. World 23, 523 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ayodele Lasisi
    • 1
    Email author
  • Rozaida Ghazali
    • 1
  • Haruna Chiroma
    • 2
  1. 1.Faculty of Computer Science and Information TechnologyUniversiti Tun Hussein Onn MalaysiaParit Raja, Batu PahatMalaysia
  2. 2.Department of Computer Science, School of ScienceFederal College of Education (Technical)GombeNigeria

Personalised recommendations