Genetics Factors and Tumor Markers in Upper Urinary Tract-Urothelial Carcinoma

  • Mark Ferretti
  • John L. PhillipsEmail author


The diagnosis of urothelial carcinoma of the upper urinary tract (UUT) may be more elusive than for UC of the bladder especially for low-stage, low-volume disease. Genetic markers may allow the diagnosis and possible prognosis of UUT-UC based on the very small tissue samples obtained through endoscopic biopsy. Families with UUT-UC are rare but point to distinct genetic features that may underlie sporadic cases such as mutations in the DNA mismatch repair (MMR) genes. MMR mutations are thought to lead to inability to repair DNA copy errors during replication causing microsatellite instability (MSI) and mutations in p53 or FGFR3. Cytology has low sensitivity in the diagnosis of low-stage UUT-UC, especially after post-cystectomy urinary diversion to bowel. Diagnostic yield may be improved by chromosomal enumeration tests (e.g., FISH), DNA assays (e.g., p53 status, methylation status, FXYD3 gene), and/or protein markers (e.g., ImmunoCyt, BTA Stat, Nuclear Matrix Protein 22 (NMP22), survivin, telomerase). Markers may also be used to identify patients who may be at risk of bladder recurrence after nephroureterectomy (e.g., expression of TP53 and E-cadherin). No single tumor marker appears to have enough specificity and sensitivity to obviate the need for careful endoscopic and imaging evaluation of the patient who may have UUT-UC. However, genetic markers continue to improve the ability to lateralize, diagnose, and predict failure after conservative or definitive management of a commonly aggressive neoplasm subtype.


Upper urinary tract-urothelial carcinoma Genetics Mismatch repair (MMR) genes Fluorescent in situ hybridization (FISH) Microsatellite mutation analysis Lynch syndrome Molecular markers 


  1. 1.
    Sidransky D, Frost P, Von Eschenbach A, et al. Clonal origin bladder cancer. N Engl J Med. 1992;326:737.CrossRefPubMedGoogle Scholar
  2. 2.
    Burger M, Catto JW, Dalbagni G et al. Epidemiology and risk factors of urothelial bladder cancer. Eur Urol 2012.Google Scholar
  3. 3.
    Colli JL, Kolettis PN. Bladder cancer incidence and mortality rates compared to ecologic factors among states in America. Int Urol Nephrol. 2010;42:659.CrossRefPubMedGoogle Scholar
  4. 4.
    Mitra AP, Alemozaffar M, Harris BN, et al. Outcomes after urothelial recurrence in bladder cancer patients undergoing radical cystectomy. Urology. 2014;84:1420.CrossRefPubMedGoogle Scholar
  5. 5.
    Raman JD, Messer J, Sielatycki JA, et al. Incidence and survival of patients with carcinoma of the ureter and renal pelvis in the USA, 1973–2005. BJU Int. 2011;107:1059.CrossRefPubMedGoogle Scholar
  6. 6.
    Kim M, Jeong CW, Kwak C, et al. Are urothelial carcinomas of the upper urinary tract a distinct entity from urothelial carcinomas of the urinary bladder? Behavior of urothelial carcinoma after radical surgery with respect to anatomical location: a case control study. BMC Cancer. 2015;15:149.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Patel N, Arya M, Muneer A, et al. Molecular aspects of upper tract urothelial carcinoma. Urol Oncol. 2014;32(28):e11.Google Scholar
  8. 8.
    Audenet F, Traxer O, Bensalah K, et al. Upper urinary tract instillations in the treatment of urothelial carcinomas: a review of technical constraints and outcomes. World J Urol. 2013;31:45.CrossRefPubMedGoogle Scholar
  9. 9.
    Jebar AH, Hurst CD, Tomlinson DC, et al. FGFR3 and Ras gene mutations are mutually exclusive genetic events in urothelial cell carcinoma. Oncogene. 2005;24:5218.CrossRefPubMedGoogle Scholar
  10. 10.
    Wang JK, Tollefson MK, Krambeck AE, et al. High rate of pathologic upgrading at nephroureterectomy for upper tract urothelial carcinoma. Urology. 2012;79:615.CrossRefPubMedGoogle Scholar
  11. 11.
    Haddad M, Cloutier J, Cornu JN, et al. Immediate nephroureterectomy or after attempting conservative treatment, on elective indications, for upper urinary tract urothelial carcinoma: comparison of the pathology reports on a retrospective monocentric study. J Endourol. 2015;29:969.CrossRefPubMedGoogle Scholar
  12. 12.
    Ho CL, Tzai TS, Chen JC, et al. The molecular signature for urothelial carcinoma of the upper urinary tract. J Urol. 2008;179:1155.CrossRefPubMedGoogle Scholar
  13. 13.
    Hyams ES, Winer AG, Shah O. Retrograde ureteral and renal access in patients with urinary diversion. Urology. 2009;74:47.CrossRefPubMedGoogle Scholar
  14. 14.
    Wang LJ, Lee SY, Teh BT, et al. Upper tract urothelial carcinomas in patients with chronic kidney disease: relationship with diagnostic challenge. Biomed Res Int. 2014;2014:989458.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Nison L, Roupret M, Bozzini G, et al. The oncologic impact of a delay between diagnosis and radical nephroureterectomy due to diagnostic ureteroscopy in upper urinary tract urothelial carcinomas: results from a large collaborative database. World J Urol. 2013;31:69.CrossRefPubMedGoogle Scholar
  16. 16.
    Phillips JL, Hayward SW, Wang Y, et al. The consequences of chromosomal aneuploidy on gene expression profiles in a cell line model for prostate carcinogenesis. Cancer Res. 2001;61:8143.PubMedGoogle Scholar
  17. 17.
    van Rhijn BW, van der Kwast TH, Vis AN, et al. FGFR3 and P53 characterize alternative genetic pathways in the pathogenesis of urothelial cell carcinoma. Cancer Res. 2004;64:1911.CrossRefPubMedGoogle Scholar
  18. 18.
    Lamy A, Gobet F, Laurent M, et al. Molecular profiling of bladder tumors based on the detection of FGFR3 and TP53 mutations. J Urol. 2006;176:2686.CrossRefPubMedGoogle Scholar
  19. 19.
    Choi W, Shah JB, Tran M, et al. P63 expression defines a lethal subset of muscle-invasive bladder cancers. PLoS ONE. 2012;7:e30206.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Lyle SR, Hsieh CC, Fernandez CA, et al. Molecular grading of tumors of the upper urothelial tract using FGFR3 mutation status identifies patients with favorable prognosis. Res Rep Urol. 2012;4:65.PubMedPubMedCentralGoogle Scholar
  21. 21.
    van Rhijn BW, van der Kwast TH, Liu L, et al. The FGFR3 mutation is related to favorable pT1 bladder cancer. J Urol. 2012;187:310.PubMedGoogle Scholar
  22. 22.
    Hanley KW, Viet SM, Hein MJ, et al. Exposure to o-toluidine, aniline, and nitrobenzene in a rubber chemical manufacturing plant: a retrospective exposure assessment update. J Occup Environ Hyg. 2012;9:478.CrossRefPubMedGoogle Scholar
  23. 23.
    Zhang Z, Pang ST, Kasper KA, et al. FXYD3: a promising biomarker for urothelial carcinoma. Biomark Insights. 2011;6:17.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Zhang Z, Furge KA, Yang XJ, et al. Comparative gene expression profiling analysis of urothelial carcinoma of the renal pelvis and bladder. BMC Med Genomics. 2010;3:58.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Srinivasan R, Ricketts CJ, Sourbier C, et al. New strategies in renal cell carcinoma: targeting the genetic and metabolic basis of disease. Clin Cancer Res. 2015;21:10.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Stefanovic V, Polenakovic M, Toncheva D. Urothelial carcinoma associated with Balkan endemic nephropathy. A worldwide disease. Pathol Biol (Paris). 2011;59:286.CrossRefGoogle Scholar
  27. 27.
    Audenet F, Colin P, Yates DR, et al. A proportion of hereditary upper urinary tract urothelial carcinomas are misclassified as sporadic according to a multi-institutional database analysis: proposal of patient-specific risk identification tool. BJU Int. 2012;110:E583.CrossRefPubMedGoogle Scholar
  28. 28.
    Roupret M, Catto J, Coulet F, et al. Microsatellite instability as indicator of MSH2 gene mutation in patients with upper urinary tract transitional cell carcinoma. J Med Genet. 2004;41:e91.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Catto JW, Azzouzi AR, Amira N, et al. Distinct patterns of microsatellite instability are seen in tumours of the urinary tract. Oncogene. 2003;22:8699.CrossRefPubMedGoogle Scholar
  30. 30.
    Sverrisson EF, Kim T, Espiritu PN, et al. The merits of cytology in the workup for upper tract urothelial carcinoma—a contemporary review of a perplexing issue. Int Braz J Urol. 2014;40:493.CrossRefPubMedGoogle Scholar
  31. 31.
    Sakano S, Inamoto T, Inoue R et al. Positive voided urine cytology predicts worse pathological findings of nephroureterectomy specimens in patients with upper tract urothelial carcinoma: does selective ureteral cytology have an additional efficacy? Jpn J Clin Oncol 2015.Google Scholar
  32. 32.
    Sarosdy MF, Schellhammer P, Bokinsky G, et al. Clinical evaluation of a multi-target fluorescent in situ hybridization assay for detection of bladder cancer. J Urol. 2002;168:1950.CrossRefPubMedGoogle Scholar
  33. 33.
    Wolinska WH, Melamed MR, Klein FA. Cytology of bladder papilloma. Acta Cytol. 1985;29:817.PubMedGoogle Scholar
  34. 34.
    Lodde M, Mayr R, Martini T, et al. Positive urine cytology and carcinoma in situ prior to second transurethral resection of the bladder correlate with positive second resection histology and the need for subsequent cystectomy. World J Urol. 2012;30:841.CrossRefPubMedGoogle Scholar
  35. 35.
    Reynolds JP, Voss JS, Kipp BR, et al. Comparison of urine cytology and fluorescence in situ hybridization in upper urothelial tract samples. Cancer Cytopathol. 2014;122:459.CrossRefPubMedGoogle Scholar
  36. 36.
    Fernandez MI, Parikh S, Grossman HB, et al. The role of FISH and cytology in upper urinary tract surveillance after radical cystectomy for bladder cancer. Urol Oncol. 2012;30:821.CrossRefPubMedGoogle Scholar
  37. 37.
    Phillips JL, Richardson IC. Aneuploidy in bladder cancers: the utility of fluorescent in situ hybridization in clinical practice. BJU Int. 2006;98:33.CrossRefPubMedGoogle Scholar
  38. 38.
    Sokolova IA, Halling KC, Jenkins RB, et al. The development of a multitarget, multicolor fluorescence in situ hybridization assay for the detection of urothelial carcinoma in urine. J Mol Diagn. 2000;2:116.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Knowles MA, Hurst CD. Molecular biology of bladder cancer: new insights into pathogenesis and clinical diversity. Nat Rev Cancer. 2015;15:25.CrossRefPubMedGoogle Scholar
  40. 40.
    Halling KC, King W, Sokolova IA, et al. A comparison of cytology and fluorescence in situ hybridization for the detection of urothelial carcinoma. J Urol. 2000;164:1768.CrossRefPubMedGoogle Scholar
  41. 41.
    Perlis N, Turker P, Bostrom PJ, et al. Upper urinary tract and urethral recurrences following radical cystectomy: review of risk factors and outcomes between centres with different follow-up protocols. World J Urol. 2013;31:161.CrossRefPubMedGoogle Scholar
  42. 42.
    Picozzi S, Ricci C, Gaeta M, et al. Upper urinary tract recurrence following radical cystectomy for bladder cancer: a meta-analysis on 13,185 patients. J Urol. 2012;188:2046.CrossRefPubMedGoogle Scholar
  43. 43.
    Sanderson KM, Cai J, Miranda G, et al. Upper tract urothelial recurrence following radical cystectomy for transitional cell carcinoma of the bladder: an analysis of 1,069 patients with 10-year followup. J Urol. 2007;177:2088.CrossRefPubMedGoogle Scholar
  44. 44.
    Gruschwitz T, Gajda M, Enkelmann A, et al. FISH analysis of washing urine from the upper urinary tract for the detection of urothelial cancers. Int Urol Nephrol. 2014;46:1769.CrossRefPubMedGoogle Scholar
  45. 45.
    Ho CC, Tan WP, Pathmanathan R, et al. Fluorescence-in-situ-hybridization in the surveillance of urothelial cancers: can use of cystoscopy or ureteroscopy be deferred? Asian Pac J Cancer Prev. 2013;14:4057.CrossRefPubMedGoogle Scholar
  46. 46.
    Wang J, Wu J, Peng L, et al. Distinguishing urothelial carcinoma in the upper urinary tract from benign diseases with hematuria using FISH. Acta Cytol. 2012;56:533.CrossRefPubMedGoogle Scholar
  47. 47.
    Kipp BR, Karnes RJ, Brankley SM, et al. Monitoring intravesical therapy for superficial bladder cancer using fluorescence in situ hybridization. J Urol. 2005;173:401.CrossRefPubMedGoogle Scholar
  48. 48.
    Amira N, Rivet J, Soliman H, et al. Microsatellite instability in urothelial carcinoma of the upper urinary tract. J Urol. 2003;170:1151.CrossRefPubMedGoogle Scholar
  49. 49.
    Mork M, Hubosky SG, Roupret M, et al. Lynch syndrome: a primer for urologists and panel recommendations. J Urol. 2015;194:21.CrossRefPubMedGoogle Scholar
  50. 50.
    Umar A, Boland CR, Terdiman JP, et al. Revised Bethesda Guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst. 2004;96:261.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Fromont G, Roupret M, Amira N, et al. Tissue microarray analysis of the prognostic value of E-cadherin, Ki67, p53, p27, survivin and MSH2 expression in upper urinary tract transitional cell carcinoma. Eur Urol. 2005;48:764.CrossRefPubMedGoogle Scholar
  52. 52.
    Roupret M, Coulet F, Azzouzi AR, et al. Accuracy of the routine detection of mutation in mismatch repair genes in patients with susceptibility to hereditary upper urinary tract transitional cell carcinoma. BJU Int. 2005;96:149.CrossRefPubMedGoogle Scholar
  53. 53.
    Esrig D, Elmajian D, Groshen S, et al. Accumulation of nuclear p53 and tumor progression in bladder cancer. N Engl J Med. 1994;331:1259.CrossRefPubMedGoogle Scholar
  54. 54.
    Mitchell S, Mayer E, Patel A. Expression of p53 in upper urinary tract urothelial carcinoma. Nat Rev Urol. 2011;8:516.CrossRefPubMedGoogle Scholar
  55. 55.
    Langner C, Ratschek M, Tsybrovskyy O, et al. P63 immunoreactivity distinguishes upper urinary tract transitional-cell carcinoma and renal-cell carcinoma even in poorly differentiated tumors. J Histochem Cytochem. 2003;51:1097.CrossRefPubMedGoogle Scholar
  56. 56.
    Miozzo M, Vaira V, Sirchia SM. Epigenetic alterations in cancer and personalized cancer treatment. Future Oncol. 2015;11:333.CrossRefPubMedGoogle Scholar
  57. 57.
    Chen H, Yu Y, Rong S, et al. Evaluation of diagnostic accuracy of DNA methylation biomarkers for bladder cancer: a systematic review and meta-analysis. Biomarkers. 2014;19:189.CrossRefPubMedGoogle Scholar
  58. 58.
    Eissa S, Swellam M, Sadek M, et al. Comparative evaluation of the nuclear matrix protein, fibronectin, urinary bladder cancer antigen and voided urine cytology in the detection of bladder tumors. J Urol. 2002;168:465.CrossRefPubMedGoogle Scholar
  59. 59.
    Pfister C, Chautard D, Devonec M, et al. Immunocyt test improves the diagnostic accuracy of urinary cytology: results of a French multicenter study. J Urol. 2003;169:921.CrossRefPubMedGoogle Scholar
  60. 60.
    Mowatt G, Zhu S, Kilonzo M, et al. Systematic review of the clinical effectiveness and cost-effectiveness of photodynamic diagnosis and urine biomarkers (FISH, ImmunoCyt, NMP22) and cytology for the detection and follow-up of bladder cancer. Health Technol Assess. 2010;14:1.CrossRefPubMedGoogle Scholar
  61. 61.
    Mian C, Pycha A, Wiener H, et al. Immunocyt: a new tool for detecting transitional cell cancer of the urinary tract. J Urol. 1999;161:1486.CrossRefPubMedGoogle Scholar
  62. 62.
    Mian C, Maier K, Comploj E, et al. uCyt+/ImmunoCyt in the detection of recurrent urothelial carcinoma: an update on 1991 analyses. Cancer. 2006;108:60.CrossRefPubMedGoogle Scholar
  63. 63.
    Lodde M, Mian C, Wiener H, et al. Detection of upper urinary tract transitional cell carcinoma with ImmunoCyt: a preliminary report. Urology. 2001;58:362.CrossRefPubMedGoogle Scholar
  64. 64.
    Mian C, Lodde M, Comploj E, et al. The value of the ImmunoCyt/uCyt+ test in the detection and follow-up of carcinoma in situ of the urinary bladder. Anticancer Res. 2005;25:3641.PubMedGoogle Scholar
  65. 65.
    Halling KC, King W, Sokolova IA, et al. A comparison of BTA stat, hemoglobin dipstick, telomerase and Vysis UroVysion assays for the detection of urothelial carcinoma in urine. J Urol. 2002;167:2001.CrossRefPubMedGoogle Scholar
  66. 66.
    Oge O, Kozaci D, Gemalmaz H. The BTA stat test is nonspecific for hematuria: an experimental hematuria model. J Urol. 2002;167:1318.CrossRefPubMedGoogle Scholar
  67. 67.
    Guo A, Wang X, Gao L, et al. Bladder tumour antigen (BTA stat) test compared to the urine cytology in the diagnosis of bladder cancer: a meta-analysis. Can Urol Assoc J. 2014;8:E347.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Jovanovic M, Hadzi-Djokic J, Dzamic Z, et al. Evaluation of the Bard BTA-test in the diagnosis of upper urinary tract tumours. Acta Chir Iugosl. 2007;54:19.CrossRefPubMedGoogle Scholar
  69. 69.
    Zimmerman RL, Bagley D, Hawthorne C, et al. Utility of the Bard BTA test in detecting upper urinary tract transitional cell carcinoma. Urology. 1998;51:956.CrossRefPubMedGoogle Scholar
  70. 70.
    Zippe C, Pandrangi L, Potts JM, et al. NMP22: a sensitive, cost-effective test in patients at risk for bladder cancer. Anticancer Res. 1999;19:2621.PubMedGoogle Scholar
  71. 71.
    Ishii T, Okadome A, Takeuchi F, et al. Urinary levels of nuclear matrix protein 22 in patients with urinary diversion. Urology. 2001;58:940.CrossRefPubMedGoogle Scholar
  72. 72.
    Shariat SF, Casella R, Khoddami SM, et al. Urine detection of survivin is a sensitive marker for the noninvasive diagnosis of bladder cancer. J Urol. 2004;171:626.CrossRefPubMedGoogle Scholar
  73. 73.
    Davies B, Chen J, Modugno F, et al. Contribution of the prostate limits the usefulness of survivin for the detection of bladder cancer. J Urol. 2005;174:1767.CrossRefPubMedGoogle Scholar
  74. 74.
    Dong ZL, Lu ZP, Wang HZ, et al. Detection of nuclear matrix protein 22 and survivin baseline level in patients after radical cystectomy. Urol Int. 2011;87:445.CrossRefPubMedGoogle Scholar
  75. 75.
    Nakanishi K, Tominaga S, Hiroi S, et al. Expression of survivin does not predict survival in patients with transitional cell carcinoma of the upper urinary tract. Virchows Arch. 2002;441:559.CrossRefPubMedGoogle Scholar
  76. 76.
    Kitamura H, Torigoe T, Hirohashi Y, et al. Nuclear, but not cytoplasmic, localization of survivin as a negative prognostic factor for survival in upper urinary tract urothelial carcinoma. Virchows Arch. 2013;462:101.CrossRefPubMedGoogle Scholar
  77. 77.
    Nakanishi K, Hiroi S, Tominaga S, et al. Expression of hypoxia-inducible factor-1alpha protein predicts survival in patients with transitional cell carcinoma of the upper urinary tract. Clin Cancer Res. 2005;11:2583.CrossRefPubMedGoogle Scholar
  78. 78.
    Ke HL, Wei YC, Yang SF, et al. Overexpression of hypoxia-inducible factor-1alpha predicts an unfavorable outcome in urothelial carcinoma of the upper urinary tract. Int J Urol. 2008;15:200.CrossRefPubMedGoogle Scholar
  79. 79.
    Wu WJ, Liu LT, Huang CN, et al. The clinical implications of telomerase activity in upper tract urothelial cancer and washings. BJU Int. 2000;86:213.CrossRefPubMedGoogle Scholar
  80. 80.
    Nakanishi K, Hiroi S, Kawai T, et al. Expression of telomerase catalytic subunit (hTERT) mRNA does not predict survival in patients with transitional cell carcinoma of the upper urinary tract. Mod Pathol. 2001;14:1073.CrossRefPubMedGoogle Scholar
  81. 81.
    Nakanishi K, Ogata S, Matsuo H, et al. Expression of LAT1 predicts risk of progression of transitional cell carcinoma of the upper urinary tract. Virchows Arch. 2007;451:681.CrossRefPubMedGoogle Scholar
  82. 82.
    Eltz S, Comperat E, Cussenot O, et al. Molecular and histological markers in urothelial carcinomas of the upper urinary tract. BJU Int. 2008;102:532.CrossRefPubMedGoogle Scholar
  83. 83.
    Oku S, Higashi M, Imazono Y, et al. Overexpression of cyclooxygenase-2 in high-grade human transitional cell carcinoma of the upper urinary tract. BJU Int. 2003;91:109.CrossRefPubMedGoogle Scholar
  84. 84.
    Kamai T, Takagi K, Asami H, et al. Prognostic significance of p27Kip1 and Ki-67 expression in carcinoma of the renal pelvis and ureter. BJU Int. 2000;86:14.CrossRefPubMedGoogle Scholar
  85. 85.
    Comperat E, Roupret M, Chartier-Kastler E, et al. Prognostic value of MET, RON and histoprognostic factors for urothelial carcinoma in the upper urinary tract. J Urol. 2008;179:868.CrossRefPubMedGoogle Scholar
  86. 86.
    Scarpini S, Roupret M, Renard-Penna R, et al. Impact of the expression of Aurora-A, p53, and MIB-1 on the prognosis of urothelial carcinomas of the upper urinary tract. Urol Oncol. 2012;30:182.CrossRefPubMedGoogle Scholar
  87. 87.
    Roupret M, Drouin SJ, Cancel-Tassin G, et al. Genetic variability in 8q24 confers susceptibility to urothelial carcinoma of the upper urinary tract and is linked with patterns of disease aggressiveness at diagnosis. J Urol. 2012;187:424.CrossRefPubMedGoogle Scholar
  88. 88.
    Yates DR, Roupret M, Drouin SJ et al. Genetic polymorphisms on 8q24.1 and 4p16.3 are not linked with urothelial carcinoma of the bladder in contrast to their association with aggressive upper urinary tract tumours. World J Urol 2013; 31:53.CrossRefPubMedGoogle Scholar
  89. 89.
    Wang YH, Wu WJ, Wang WJ et al. CEBPD amplification and overexpression in urothelial carcinoma: a driver of tumor metastasis indicating adverse prognosis. Oncotarget 2015.Google Scholar
  90. 90.
    Raina R, Pahlajani G, Ponsky LE, et al. The clinical utility of atypical cytology is significantly increased in both screening and monitoring for bladder cancer when indexed with nuclear matrix protein-22. BJU Int. 2008;102:297.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of UrologyWestchester Medical Health Network/New York Medical CollegeValhallaUSA

Personalised recommendations