Low-Cost Vehicle Driver Assistance System for Fatigue and Distraction Detection

  • Sandra Sendra
  • Laura Garcia
  • Jose M. Jimenez
  • Jaime Lloret
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 185)

Abstract

In recent years, the automotive industry is equipping vehicles with sophisticated, and often, expensive systems for driving assistance. However, this vehicular technology is more focused on facilitating the driving and not in monitoring the driver. This paper presents a low-cost vehicle driver assistance system for monitoring the drivers activity that intends to prevent an accident. The system consists of 4 sensors that monitor physical parameters and driver position. From these values, the system generates a series of acoustic signals to alert the vehicle driver and avoiding an accident. Finally the system is tested to verify its proper operation.

Keywords

Low-cost sensors Vehicular technology Driver assistance system Fatigue episodes Distraction detection Sensing system 

References

  1. 1.
    Mapfre Foundation. (Online Article) Seguridad activa y pasiva. www.seguridadvialenlaempresa.com/seguridad-empresas/actualidad/noticias/seguridad-vial-activa-y-pasiva-2.jsp. Accessed 25 Aug 2016
  2. 2.
    Dirección general de tráfico, Ministerio del Interior, Spanish Government. (Online Article) Las principales cifras de la siniestralidad vial. España 2014, p. 21 (2014). http://www.dgt.es/es/seguridad-vial/estadisticas-e-indicadores/publicaciones/. Accessed 25 Aug 2016
  3. 3.
    Fukuhara, H.: Vehicle collision alert system. US Patent 5355118 A, 11 Oct 1994Google Scholar
  4. 4.
    Dirección general de tráfico, Ministerio del Interior, Spanish Government. (Online Article) Anuario estadístico de accidentes 2014, p. 10 (2014). http://www.dgt.es/es/seguridad-vial/estadisticas-e-indicadores/publicaciones/anuario-estadistico-general/. Accessed 25 Aug 2016
  5. 5.
    Dirección general de tráfico, Ministerio del Interior, Spanish Government. (Online Article) Otros factores de riesgo: La fatiga. http://www.dgt.es/PEVI/documentos/catalogo_recursos/didacticos/did_adultas/fatiga.pdf. Accessed 25 Aug 2016
  6. 6.
    Seeing machines web page. https://www.seeingmachines.com/. Accessed 25 Aug 2016
  7. 7.
    Sigari, M.H., Pourshahabi, M.R., Soryani, M., Fathy, M.: A review on driver face monitoring systems for fatigue and distraction detection. Int. J. Adv. Sci. Technol. 64, 73–100 (2014). http://dx.doi.org/10.14257/ijast.2014.64.07
  8. 8.
    Kutila, M., Jokela, M., Markkula, G., Romera Rue, M.: Driver distraction detection with a camera vision system. In: 14th IEEE International Conference on Image Processing (ICIP 2007), San Antonio, TX, USA, 16–19 September 2007. doi:10.1109/ICIP.2007.4379556
  9. 9.
    Rezaei, M., Klette, R.: 3D cascade of classifiers for open and closed eye detection in driver distraction monitoring. In: Real, P., Diaz-Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch, W. (eds.) CAIP 2011. LNCS, vol. 6855, pp. 171–179. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23678-5_19 CrossRefGoogle Scholar
  10. 10.
    Mbouna, R.O., Kong, S.G., Chun, M.G.: Visual analysis of eye state and head pose for driver alertness monitoring. IEEE Trans. Intell. Transp. Syst. 14(3), 1462–1469 (2013). doi:10.1109/TITS.2013.2262098 CrossRefGoogle Scholar
  11. 11.
    Wahlstrom, E., Masoud, O., Papanikolopoulos, N.: Vision-based methods for driver monitoring. In: Proceedings of the International Conference on Intelligent Transportation Systems, vol. 2, pp. 903–908 (2003)Google Scholar
  12. 12.
    Cherrat, L., Ezziyyani, M., El Mouden, A., Hassar, M.: Security and surveillance system for drivers based on user profile and learning systems for face recognition. Netw. Protoc. Algorithms 7(1), 98–118 (2015). doi:http://dx.doi.org/10.5296/npa.v7i1.7151
  13. 13.
    Dong, Y., Hu, Z., Uchimura, K., Murayama, N.: Driver inattention monitoring system for intelligent vehicles: a review. IEEE Trans. Intell. Transp. Syst. 12(2), 596–614 (2011). doi:10.1109/TITS.2010.2092770 CrossRefGoogle Scholar
  14. 14.
    Force Sensitive Resistor features. http://www.trossenrobotics.com/productdocs/2010-10-26-DataSheet-FSR402-Layout2.pdf. Accessed 25 Aug 2016
  15. 15.
    Louiza, M., Samira, M.: A new framework for request-driven data harvesting in vehicular sensor networks. Netw. Protoc. Algorithms 5(4), 1–18 (2013)CrossRefGoogle Scholar
  16. 16.
    Yao, H., Si, P., Yang, R., Zhang, Y.: Dynamic spectrum management with movement prediction in vehicular ad hoc networks. Ad Hoc Sens. Wirel. Netw. 32(1), 79–97 (2016)Google Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017

Authors and Affiliations

  • Sandra Sendra
    • 1
    • 2
  • Laura Garcia
    • 2
  • Jose M. Jimenez
    • 2
  • Jaime Lloret
    • 2
  1. 1.Signal Theory, Telematics and Communications Department (TSTC)Universidad de GranadaGranadaSpain
  2. 2.Integrated Management Coastal Research InstituteUniversidad Politecnica de ValenciaGrao de GandiaSpain

Personalised recommendations