Computer Simulations for Head Injuries Verification After Impact

  • Mariusz PtakEmail author
  • Paweł Kaczyński
  • Fabio Fernandes
  • Ricardo Alves de Sousa
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)


The paper describes an experimental and numerical approach to head injury verification occurring in transportation accidents. Current trends in pedestrian, cyclist and motorcyclist safety are presented and some state-of-the-art techniques are included to mitigate injuries, which occur when an external force traumatically damages the brain. Finally, a finite element analysis was conducted to assess the safety performance of a commercial motorcycle helmet.


Finite element head modeling Impact Injury Helmet Simulation Biomechanics 


  1. 1.
    Czmochowski, J., Moczko, P., Odyjas, P., Pietrusiak, D.: Tests of rotary machines vibrations in steady and unsteady states on the basis of large diameter centrifugal fans. Eksploat. i Niezawodn. 16, 211–216 (2014).Google Scholar
  2. 2.
    Baranowski, P., Damaziak, K., Malachowski, J., Mazurkiewicz, L., Muszyński, A.: A child seat numerical model validation in the static and dynamic work conditions. Arch. Civ. Mech. Eng. (2014).Google Scholar
  3. 3.
    Karliński, J., Ptak, M., Działak, P., Rusiński, E.: Strength analysis of bus superstructure according to Regulation No. 66 of UN/ECE. Arch. Civ. Mech. Eng. 14, 342–353 (2014).Google Scholar
  4. 4.
    Żołkiewski, S.: Vibrations of beams with a variable cross-section fixed on rotational rigid disks. Lat. Am. J. Solids Struct. 10, 39–57 (2013).Google Scholar
  5. 5.
    Derlukiewicz, D., Ptak, M., Koziołek, S.: Proactive Failure Prevention by Human-Machine Interface in Remote-Controlled Demolition Robots. New Advances in Information Systems and Technologies. Springer International Publishing, 711-720 (2016).Google Scholar
  6. 6.
    Ptak, M., Karliński, J., Derlukiewicz, D., Działak, P.: Design and Numerical Analysis of a Roof-Mounted Bicycle Carrier. Solid State Phenom. 251, 177–182 (2016).Google Scholar
  7. 7.
    Krzystała, E., Mężyk, A., Kciuk, S.: Minimisation of the explosion shock wave load onto the occupants inside the vehicle during trinitrotoluene charge blast. Int. J. Inj. Contr. Saf. Promot. 1–9 (2014).Google Scholar
  8. 8.
    Cesari, D., Cavallero, C., Farisse, J., Bonnoit, J.: Effects of crash conditions on pedestrian leg kinematics and injuries based on cadaver and dummy tests. 29th Annual Conference of The American Association For Automotive Medicine. pp. 275–285., Washington D.C. (1985).Google Scholar
  9. 9.
    Kerrigan, J.R., Carlos, A.-D., Foster, J., Crandall, J.R., Rizzo, A.: Pedestrian Injury Analysis: Field Data vs. Laboratory Experiments. IRCOBI Conference 2012. pp. 672–689 (2012).Google Scholar
  10. 10.
    Anderson, R.W.G., Streeter, L.D., Ponte, G., McLean, J., Mc: Pedestrian Reconstruction Using Multibody Madymo Simulation And The Polar-li Dummy: A Comparison Of Head Kinematics. ESV -Paper no. 07–0273. 1–15 (2007).Google Scholar
  11. 11.
    Matsui, Y., Wittek, A., Tanahashi, M.: Pedestrian kinematics due to impacts by various passenger cars using full-scale dummy. Int. J. Veh. Saf. 1, 64 (2005).Google Scholar
  12. 12.
    Yasuki, T., Yamamae, Y.: Validation of Kinematics and Lower Extremity Injuries Estimated by Total Human Model for Safety in SUV to Pedestrian Impact Test. J. Biomech. Sci. Eng. 5, 340–356 (2010).Google Scholar
  13. 13.
    Yang, J.: Review of injury biomechanics in car-pedestrian collisions. Int. J. Veh. Saf. 1, 100 (2005).Google Scholar
  14. 14.
    Jarret, K., Saul, R.: Pedestrian injury-analysis of the PCDS field collision data. Proceedings of the 16th International Enhanced Safety Vehicle Conference. pp. 1204–1211 (1998).Google Scholar
  15. 15.
    Jurecki, R.S., Stańczyk, T.L.: Driver reaction time to lateral entering pedestrian in a simulated crash traffic situation. Transp. Res. Part F Traffic Psychol. Behav. 27, 22–36 (2014).Google Scholar
  16. 16.
    Ravani, B., Brougham, D., T Mason, R.: Pedestrian post-impact kinematics and injury patterns. Traffic Saf. P-97, 791–824 (1981).Google Scholar
  17. 17.
    Kaeser, R., Devaud, J.: Design Aspects of Energy Absorption in Car Pedestrian Impacts. SAE Tech. Pap. 830625. 239–253 (1983).Google Scholar
  18. 18.
    Ishikawa, H., Kajzer, J., Ono, K., Sakurai, M.: Simulation of car impact to pedestrian lower extremity: influence of different car-front shapes and dummy parameters on test results. Accid. Anal. Prev. 26, 231–242 (1994).Google Scholar
  19. 19.
    Mizuno, K., Kajzer, J.: Compatibility problems in frontal, side, single car collisions and car-to-pedestrian accidents in Japan. Accid. Anal. Prev. 31, 381–391 (1999).Google Scholar
  20. 20.
    O’Neill, B. Kyrychenko, S.: Crash Incompatibilities Between Cars and Light Trucks: Issues and Potential Countermeasures. Veh. Aggress. Compat. Automot. Crashes, SAE SP-1878. 1, 1829–1841 (2004).Google Scholar
  21. 21.
    Gean, A.D., Fischbein, N.J.: Head trauma. Neuroimaging Clin. N. Am. 20, 527–56 (2010).Google Scholar
  22. 22.
    LLC Elemance: Global Human Body Models Consortium. User Man. M50 Occupant Version 4.2 LS-DYNA. (2014).Google Scholar
  23. 23.
    Weber, J., Maas, A.: Neurotrauma: New Insights into Pathology and Treatment, Vol. 161. Elsevier, (2007).Google Scholar
  24. 24.
    Fernandes, F.A.O., de Sousa, R.J.A.: Finite element analysis of helmeted oblique impacts and head injury evaluation with a commercial road helmet. Struct. Eng. Mech. 48, 661–679 (2013).Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Mariusz Ptak
    • 1
    Email author
  • Paweł Kaczyński
    • 1
  • Fabio Fernandes
    • 2
  • Ricardo Alves de Sousa
    • 2
  1. 1.Department of Machine Design and ResearchWrocław University of TechnologyWroclawPoland
  2. 2.TEMA: Centre for Mechanical Technology and Automation, Department of Mechanical EngineeringUniversity of AveiroAveiroPortugal

Personalised recommendations