Robust optimization of power network operation: storage devices and the role of forecast errors in renewable energies

  • Carsten MatkeEmail author
  • Daniel BienstockEmail author
  • Gonzalo Muñoz
  • Shuoguang Yang
  • David Kleinhans
  • Sebastian SagerEmail author
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 693)


In this paper we investigate a robust optimization framework for controlling energy storage devices in power networks with high share of fluctuating renewable energy sources. Our approach relies on the industry-standard DC power flow approximation, together with a multi-stage model that incorporates renewable uncertainty and an approximation of battery dynamics. More precisely, we consider storage device operation under linear control and taking into account power limits, energy conversion efficiencies, and energy limits for the state of charge. The aim of the robust optimization is to minimize costs for generating energy from conventional power generators while relying on storage to compensate for renewable output forecast errors. In order to obtain a solution we propose a cutting-plane procedure which can be used for investigating practical case studies.


robust optimization power network control fluctuating renewables energy storage devices 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beaudin, M., Zareipour, H., Schellenberglabe, A., Rosehart, W.: Energy storage for mitigating the variability of renewable electricity sources: An updated review. Energy for Sustainable Development 14(4), 302 – 314 (2010). DOI
  2. 2.
    Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust optimization. Princeton University Press (2009)Google Scholar
  3. 3.
    Benders, J.: Partitioning procedures for solving mixed-variables programming problems. Numerische Mathematik 4(1), 238–252 (1962)Google Scholar
  4. 4.
    Bertsimas, D., Brown, D.B., Caramanis, C.: Theory and applications of robust optimization. SIAM review 53(3), 464–501 (2011)Google Scholar
  5. 5.
    Bienstock, D.: Histogram models for robust portfolio optimization. J. Comput. Finance 11, 1 – 64 (2007)Google Scholar
  6. 6.
    Bienstock, D.: Electrical Transmission System Cascades and Vulnerability: An Operations Research Viewpoint, vol. 22. SIAM (2016)Google Scholar
  7. 7.
    Bienstock, D., Chertkov, M., Harnett, S.: Chance-constrained DC-OPF. SIAM Review 56, 461–495 (2014)Google Scholar
  8. 8.
    Bienstock, D., Mattia, S.: Using mixed-integer programming to solve power grid blackout problems. Discrete Optimization 4, 115 – 141 (2007)Google Scholar
  9. 9.
    Bienstock, D., Özbay, N.: Computing robust basestock levels. Discrete Optimization 5, 389 – 414 (2008)Google Scholar
  10. 10.
    Bienstock, D., Verma, A.: The N - k Problem in Power Grids: New Models, Formulations and Numerical Experiments. SIAM J. Optimization 20, 2352–2380 (2010)Google Scholar
  11. 11.
    Bludszuweit, H., Domínguez-Navarro, J.A.: A probabilistic method for energy storage sizing based on wind power forecast uncertainty. IEEE Transactions on Power Systems 26(3), 1651–1658 (2011)Google Scholar
  12. 12.
    Bludszuweit, H., Domínguez-Navarro, J.A., Llombart, A.: Statistical analysis of wind power forecast error. IEEE Transactions on Power Systems 23(3), 983–991 (2008)Google Scholar
  13. 13.
    Brown, P.D., Lopes, J.P., Matos, M.A.: Optimization of pumped storage capacity in an isolated power system with large renewable penetration. IEEE Transactions on Power systems 23(2), 523–531 (2008)Google Scholar
  14. 14.
    Dufo-López, R., Bernal-Agustín, J.L., Contreras, J.: Optimization of control strategies for stand-alone renewable energy systems with hydrogen storage. Renewable energy 32(7), 1102–1126 (2007)Google Scholar
  15. 15.
    Glover, J., Sarma, M., Overbye, T.: Power System Analysis and Design. Cengage Learning (2011)Google Scholar
  16. 16.
    Hedayati, M., Zhang, J., Hedman, K.: Joint transmission expansion planning and energy storage placement in smart grid towards efficient integration of renewable energy (2014)Google Scholar
  17. 17.
    Houston, E., Kennelly, A.: The electric motor and the transmission power. Elementary electro-technical series. The W. J. Johnston Company (1896)Google Scholar
  18. 18.
    Jannati, M., Hosseinian, S., Vahidi, B., Li, G.J.: A survey on energy storage resources configurations in order to propose an optimum configuration for smoothing fluctuations of future large wind power plants. Renewable and Sustainable Energy Reviews 29, 158–172 (2014)Google Scholar
  19. 19.
    Jiang, R., Wang, J., Guan, Y.: Robust unit commitment with wind power and pumped storage hydro. IEEE Transactions on Power Systems 27(2), 800–810 (2012)Google Scholar
  20. 20.
    Lorca, A., Sun, X.: Multistage robust unit commitment with dynamic uncertainty sets and energy storage. IEEE Transactions on Power Systems PP(99), 1–1 (2016)Google Scholar
  21. 21.
    Luo, X., Wang, J., Dooner, M., Clarke, J.: Overview of current development in electrical energy storage technologies and the application potential in power system operation. Applied Energy 137, 511 – 536 (2015). DOI
  22. 22.
    Matke, C., Medjroubi, W., Kleinhans, D.: SciGRID - An Open Source Reference Model for the European Transmission Network (v0.2) (2016). URL
  23. 23.
    Oldham, K.: The Doctrine of Description: Gustav Kirchhoff, Classical Physics, and the ”purpose of All Science” in 19th-century Germany. University of California, Berkeley (2008)Google Scholar
  24. 24.
    Qiu, T., Xu, B., Wang, Y., Dvorkin, Y., Kirschen, D.: Stochastic multi-stage co-planning of transmission expansion and energy storage. IEEE Transactions on Power Systems PP(99), 1–1 (2016). DOI  10.1109/TPWRS.2016.2553678
  25. 25.
    Schavemaker, P., van der Sluis, L.: Electrical Power System Essentials. Wiley (2008)Google Scholar
  26. 26.
    Siemer, L., Schöpfer, F., Kleinhans, D.: Cost-optimal operation of energy storage units: Benefits of a problem-specific approach. Journal of Energy Storage 6, 11–21 (2016)Google Scholar
  27. 27.
    Wu, J., Zhang, B., Li, H., Li, Z., Chen, Y., Miao, X.: Statistical distribution for wind power forecast error and its application to determine optimal size of energy storage system. International Journal of Electrical Power & Energy Systems 55, 100–107 (2014)Google Scholar
  28. 28.
    Zimmerman, R.D., Murillo-Sanchez, C.E.: Matpower 6.01b User’s Manual. Power Systems Engineering Research Center (Pserc) (2016). URL
  29. 29.
    Zimmerman, R.D., Murillo-Sanchez, C.E., Thomas, R.J.: MATPOWER: Steady-State Operations, Planning, and Analysis Tools for Power Systems Research and Education. IEEE Transactions on Power Systems 26(1), 12–19 (2011). DOI  10.1109/TPWRS.2010.2051168

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.NEXT ENERGY, EWE Research Centre for Energy TechnologyUniversity of OldenburgOldenburgGermany
  2. 2.Department of Industrial Engineering and Operations ResearchColumbia UniversityNew YorkUSA
  3. 3.Institute for Mathematical Optimization, Otto-von-Guericke-University MagdeburgMagdeburgGermany

Personalised recommendations